Quaternary phosphonium compounds: new toxic compounds present in sediments and suspended matter

Simon Brand, Uwe Kunkel, Michael Schlüsener, Thomas Ternes
Federal Institute of Hydrology, Koblenz (GER)

11th International SedNet Conference, Dubrovnik
04th April 2019
Target vs. Non-target Analysis

Target-Analysis
- Selection of substances (Targets)
- Reference Standard (Calibration, method optimization)
- Identification and Quantification

Non-target-Analysis
- No standards
- Selection of analytical method
- Database: List of exact masses and retention times (RTs)
How it all started…

Non-Target Screening in Koblenz:

• Daily composite sample of the river Rhine (km 590.3) since beginning of 2014

• Analysis of samples via HPLC- QToF-MS (SCIEX TripleTOF 5600/6600)
 ➔ Direct injection of Rhine water samples

• Possibility of retrospective data analysis

• **Goal: Detection of „features“ with different concise time trends**
Results: Time trends of features in the Rhine at Koblenz

- Evaluation of all detected signals (> 10000)
- Find recurring features
- Investigate discontinuous emissions
Results: Recurring feature

Identification:
$C_{20}H_{20}OP^+$; Methoxymethyl-triphenylphosphonium cation

$m/z = 307.125$, $RT = 8.0$ min

Normalized peak area

Flow rate (m³/s)

01.02 01.05 01.08 01.11 01.02
Identification of further quaternary phosphonium compounds (QPC)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Formula</th>
<th>Structure</th>
<th>m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyltriphenylphosphonium cation (Me-Ph$_3$P$^+$)</td>
<td>C${19}$H${18}$P$^+$</td>
<td></td>
<td>277.1141</td>
</tr>
<tr>
<td>Ethyltriphenylphosphonium cation (Et-Ph$_3$P$^+$)</td>
<td>C${20}$H${20}$P$^+$</td>
<td></td>
<td>291.1297</td>
</tr>
<tr>
<td>Methoxymethyltriphenylphosphonium cation (MeOMe-Ph$_3$P$^+$)</td>
<td>C${20}$H${20}$OP$^+$</td>
<td></td>
<td>307.1246</td>
</tr>
<tr>
<td>Butyltriphenylphosphonium cation (Bu-Ph$_3$P$^+$)</td>
<td>C${22}$H${24}$P$^+$</td>
<td></td>
<td>319.1616</td>
</tr>
<tr>
<td>Tetraphenylphosphonium cation (Ph$_4$P$^+$)</td>
<td>C${24}$H${20}$P$^+$</td>
<td></td>
<td>339.1297</td>
</tr>
</tbody>
</table>
Application of QPCs: Wittig reaction

Nobel Prize in Chemistry 1979

a) Wittig reaction: Synthesis of Vitamin A, β-Carotene, ...
b) also as phase transfer catalyst
Back to target analysis:

(Samples from June 2015)
Target Method:
- 25 QPCs and derived phosphine oxides
- Longitudinal sampling of sediment (if possible, also suspended matter) at rivers Rhine and Elbe

Rhein/Bimmen-Lobith
- Me-Ph$_3$P$^+$: 19 µg/kg
- MeOMe-Ph$_3$P$^+$: 68 µg/kg
- Et-Ph$_3$P$^+$: 19 µg/kg

Rhein/Koblenz
- Me-Ph$_3$P$^+$: 80 µg/kg
- MeOMe-Ph$_3$P$^+$: 210 µg/kg
- Et-Ph$_3$P$^+$: 64 µg/kg

Rhein/Koblenz
- Me-Ph$_3$P$^+$: 43 µg/kg
- MeOMe-Ph$_3$P$^+$: 750 µg/kg
- Et-Ph$_3$P$^+$: 86 µg/kg

Main/Bischofsheim
- Me-Ph$_3$P$^+$: <LOQ
- MeOMe-Ph$_3$P$^+$: <LOQ
- Et-Ph$_3$P$^+$: <LOQ

Landgraben/Trebur
- Me-Ph$_3$P$^+$: 560 µg/kg
- MeOMe-Ph$_3$P$^+$: 1200 µg/kg
- Et-Ph$_3$P$^+$: 190 µg/kg

Rhein/Breisach
- Me-Ph$_3$P$^+$: <LOQ
- MeOMe-Ph$_3$P$^+$: <LOQ
- Et-Ph$_3$P$^+$: 85 µg/kg

(Samples from 2015)
Back to target analysis:

1) Longitudinal sampling gives good idea of the origin of the QPC contaminations.

2) Tidal amplitude may move contaminated sediments upstream to originally unexpected sites.
 → „Tidal Pumping“

(Samples from 2015)
Time Trends:

- Freeze-dried annual composite suspended matter samples, provide by the German Environmental Specimen Bank

\[\text{QPCs have been present in the aquatic environment for at least one decade!} \]

\[(\text{SM load [t/a]} \times 10^3 \times \text{Concentration [µg/kg]}) \times 10^{-9} = \text{Annual QPC load [kg/a]} \]

\[\text{e.g. MeOMe-Ph}_3\text{P}^+ \text{ 2012 in Koblenz: 1 413 116 [t/a]} \times 260 [\text{µg/kg}] \times 10^{-6} = 370 \text{ kg/a} \]
Degradation Experiment:

- Aerobic degradation experiment with four QPCs over 100 days:

 a) Me-Ph$_3$P$^+$
 \[\log K_D: 3.23 \pm 0.11 \]

 b) Et-Ph$_3$P$^+$
 \[\log K_D: 3.14 \pm 0.23 \]

 c) MeOMe-Ph$_3$P$^+$
 \[\log K_D: 3.29 \pm 0.11 \]

 d) Bu$_4$P$^+$
 \[\log K_D: 2.03 \pm 0.07 \]

- Recovery Rates 70-80%
- Linear trends over 100 days \(\rightarrow \) no degradation!
- Recovery in liquid phase significantly lower than in sediment extracts \(\rightarrow \) high K_D values, good sorption onto sediment/suspended matter!
Toxicity:

- The following tests were performed with 13 QPCs:
 - Determination of ROS (reactive oxygen species), determination of cytotoxicity, AMES-Test, induction of micronuclei

- (Nearly) all QPCs exhibited cytotoxicity
 - $\text{Ph}_4\text{P}^+ > \text{Ph}_3\text{P}^+\text{-R}$ with $\text{R}=\text{alkyl}$, $\text{Bz} > \text{R}=\text{Ether/Ester} > \text{Bu}_4\text{P}^+$; phosphinoxides

- Four substances also showed genotoxic potential
 - $\text{MeOMe-Ph}_3\text{P}^+ \text{Cl}^-$, $\text{MeOCarbMe-Ph}_3\text{P}^+\text{Br}^-$, $\text{Bu}_4\text{P}^+\text{Br}^-$, $\text{Ph}_3\text{PO (TPPO)}$

- Keep in Mind: as intermediates in chemical synthesis they are not covered by any product regulation!
Conclusion:

- With the help of (retrospective) **non-target analysis**, new emerging contaminants can be identified.
- **Quaternary phosphonium compounds (QPCs)** were identified as anthropogenic contaminants in German rivers.
- QPCs **adsorb** very well onto sediment and suspended matter; concentrations of up to 1200 µg/kg (Rhein catchment area) or 1000 µg/kg (Tidal Elbe) have been detected.
- QPCs are **persistent** and have been present for at least one decade in the aquatic environment.
- QPCs show **cytotoxicity** and some exhibit even **genotoxic potential**, which emphasizes the need for an emission regulation of these compounds.

Publications:
Acknowledgements

• Financial Support: BMBF/Water JPI, BMU, BMVI
• Working Group & Project Partners

• ... you all for your attention!