

00

Numerical modelling of plastic transport and accumulation at the Austrian Danube River

<u>Pessenlehner, S.¹,</u> Liedermann, M.¹, Tritthart, M.¹, Habersack, H.¹

03.04.2019 - SedNet Conference, Dubrovnik

¹ Institute of Hydraulic Engineering and River Research (IWA) Department of Water, Atmosphere and Environment University of Natural Resources and Life Sciences, Vienna, Austria Email: sebastian.pessenlehner@boku.ac.at; Phone: +43 1 47654-81924

Introduction

- Worldwide plastic production increase:
 1,7 Mio. t (1959) to 348 Mio. t (2017) (PlasticsEurope, 2018)
- Most important plastics: PP, PE, PS, PU, PET, PVC (PlasticsEurope, 2018)
- Total degradation of plastics in nature very slow

Source: BBC, 2017

Source: PlasticsEurope 2018

Introduction – Project area

- More than 80 % of marine plastics is related to land-based sources
- Rivers nowadays are known to be the main contributors for plastic debris to the ocean
 BUT → almost no studies in freshwater systems
- Increasing quantities of macro plastic waste (particles > 5mm) near the banks and within the inundation areas of the Nationalpark Donau-Auen (collecting activities)
- Launching of a project to deal with macro plastic waste in and along the Danube
 between Vienna and Bratislava

Aims of PlasticFreeDanube

- Methodologies, data and a manual for assessment and monitoring plastic pollution in the fluvial ecosystems
- Action plan for the management of plastic waste and implementation of pilot measures against plastic pollution in the Danube
- Awareness raising (public & stakeholders) about plastic litter pollution in rivers

Modelling and monitoring of plastic pollution in the fluvial ecosystems

- Detection of accumulation zones
- 3D Hydrodynamic Modelling
- Particle Tracing → Characterization of accumulation zones (bank near & innundation area
- Possible construction ideas to reduce sampling actions

Methods

Detection / Characterisation of accumulation zones - Morphodynamics

Digital Terrain Models based on:

Laser Scan 2010 / Single Beam 2015 / Terrestrial Survey

Methods

Detection / Characterisation of accumulation zones - Flow field

 ADCP discharge & flow velocity

Calibration and validation

Water level Donau - 22.08.2018

Tasks and Methods

Modelling of accumulation zones

- Hydrodynamic Modelling of the flow field
- Particle tracing in complexe structures

Accumulation Zones \rightarrow Determination

Data from Excursions and waste collection campaigns of the "National Park Donauauen" used to determine modelling reaches \rightarrow Gathered in a GIS map

Anabranch/innundation area

Shore line /bank near

Woody debris

Accumulation Zones \rightarrow Modelling Areas

- 3D numerical model Haslau (2,5 km)
- 3D numerical model Wildungsmauer-Witzelsdorf (4,2 km
- 2D large scale model Vienna– Bratislava (25,6 km)

Hydrodynamic Modelling

Setup of a hydrodynamic model of the accumulation zone Haslau

8 m

4 m

2 m

Result RNQ: 980 m³/s

Result MQ: 1930 m³/s

Result Q: 3000 m³/s

Detail –velocity vectors surface layer

and the second second		
NELSE STREET		
		//
		/
		Level 5
	RNQ: 1930 m³/s	m 50 100

Flow velocity [m/s]

0.300
0.600
0.900
1.200
1.500
1.800
2.100
2.400
2.700

– 10 – 0

Conclusions – 3D Numerical Model Haslau

- Significant vortex formations and high water age at RNQ (980 m³/s)
 - ➔ marginal macro plastic accumulaiton
- Scenario water level lowering to RNQ
 → high probability of macro plastic accumulation
- Partial overflow of groynes and guiding walls at MQ (1930 m³/s)
 → Moderate vortex formation; initial accumulation
- Accumulation Q ↓ (≈ RNQ Entire overflow of groynes and of macro ٠ plastic Initial input of guiding walls at 3.000m³/s Q ↑ (≈ MQ) macro plastic in groyne fields Remobilisation of macro plastic Macro plastic Q↓ Marginal macro plastic accumulation RNQ accumulation Marginal macro QJ plastic Page 17 accumulation

Numerical Model – 2D Large Scale Model Vienna - Bratislava

- Evaluation of macro plastic transport in the innundation area
- Implemented concept model considering drainage effects
- Quasi-stationary discharge used for particel tracing

Numerical Model – 2D Large Scale model Vienna - Bratislava

Particle Tracing (2D) – Innundation area

Characterisation of accumulation zones

- Bank near/shore line accumulation
 - occuring at frequent water levels
 - influenced by wave splash

Statistical analysis of hydrologic data

Autumn & Winter: Q1000 – Q2000

- Bank near/shore line accumulation •
 - Classification of discharge periods based on 25% and 75% quartiles

Spring & Summer: Q1450 – Q2850

Characterisation of accumulation zones

- Flood plain accumulation •
 - starting from 2400 m³/s
 - quantification of partial discharge ۲
 - effect of vegetation

Characterisation of accumulation zones

- Flood plain accumulation
 - High accumulation potential related to specific discharge

Specific discharge (m³/m²) in the innundation area Haslau at Q6000 m³/s

- Flood plain accumulation
 - · High accumulation potential at the outflow area
 - Decreasing accumulation potential depending on the distance from the outflow caused by filtration effect of vegetation

Conclusions – 2D Large Scale model Vienna - Bratislava

2D large scale model Wien-Bratislava

- Simulation of quasi-stationary discharge suitable for particle tracing
- Particles are likely to drift into side arms (connected from 2.400 m³/s)
- Accumulation of particles in sink areas of the floodplain during water level lowering can be observed
- Determination of bank near accumulation areas for 2 periods
- Characterization of flood plain accumulation with respect to vegetation effects (→Validation)

Protect Nature - avoid pollution!