INVESTIGATING THE INFRASTRUCTURE-INDUCED LEGACY SEDIMENTS ALONG THE RHÔNE RIVER (FRANCE)

<u>Sophia VAUCLIN</u>, Brice MOURIER, Alvaro TENA, Gabrielle SEIGNEMARTIN, Jean-François BERGER, Hervé PIÉGAY, Thierry WINIARSKI

Ph.D student – LEHNA laboratory (CNRS – University of Lyon)

Study partly funded by the FEDER and the French Ministry of Environment through the Rhône Sediment Observatory (OSR5)

WHAT ARE LEGACY SEDIMENTS?

- Relatively recent terminology: first used in *Novotny, 2004.*
- Various meanings in the literature: sediments contaminated with « legacy pollutants », sediment deposited as a result of past human activity, etc.
- The definition we use :

« **Legacy sediments** are those for which the location, volume, and/or presence of contaminants results from past and contemporary **human activities**. » (*Wohl, 2015*)

Example of legacy sediments found in the Mid-Atlantic area (USA) : accumulation of fine overbank sediments Source : Department of Environmental Protection of Pennsylvania

Possible legacy sediments identified in a secondary channel of the Rhône River in Péage-de-Roussillon (France) Source : Sophia Vauclin

SOME EXAMPLES OF LEGACY SEDIMENTS

CHARACTERISTICS	CAUSE(S)	SOURCE(S)
Important contamination (metallic elements, POPs)	UrbanizationIndustrializationMining activities	 Coxon et al., 2016 Martin, 2015 Pavlowsky et al., 2017; Davies et al., 2018
Increased organic carbon content	Catchment deforestation	Dalton et al., 2014
Fine sediments deposition with higher accumulation rate	Land clearance (agriculture)	Starkel et al., 2006; Brown et al., 2013; Dalton et al., 2014
Decreased overbank sedimentation	Implementation of dikes	Meade and Moody, 2009

WHY FOCUS ON RIVER INFRASTRUCTURES?

Hydraulic and hydroelectric infrastructures (e.g. dams, weirs, dikes, groynes, embankments, etc.) are ubiquitous on most large rivers!

An overview of the hydraulic/hydroelectric infrastructures implemented on large European rivers (Source : data from *Rivers of Europe, Tockner et al., 2009*)

WHY FOCUS ON RIVER INFRASTRUCTURES?

Hydraulic and hydroelectric infrastructures (e.g. dams, weirs, dikes, groynes, embankments, etc.) are ubiquitous on most large rivers!

→ Can we identify legacy sediments caused by river infrastructures?

An overview of the hydraulic/hydroelectric infrastructures implemented on large European rivers (Source : data from *Rivers of Europe, Tockner et al., 2009*)

THE BYPASSED RHÔNE, A HIGHLY ENGINEERED SYSTEM

Girardon

infrastructures =

longitudinal dykes +

transversal groynes

(1880-1900)

Girardon infrastructures on the Rhône River in Irigny (1957) (Source : © SMIRIL)

Girardon infrastructures on the Rhône River in Péage-de-Roussillon (Source : © IGN)

A typical bypass configuration on the Rhône River (Source : © CNR)

- A sudden change in stratigraphy, grain-size repartition and EMMA is observed in 5 out of 6 cores (red line).
- The sediments above this limit are **homogenous** and **rather peculiar**:
- fine,
- poorly classified,
- D50 and mode are separated,
- only EM1 and EM2 are represented

- A sudden change in stratigraphy, grain-size repartition and EMMA is observed in 5 out of 6 cores (red line).
- The sediments above this limit are **homogenous** and **rather peculiar**:
- fine,
- poorly classified,
- D50 and mode are separated,
- only EM1 and EM2 are represented

Hypothesis:

This grain-size change was caused by engineering work on the river (either the Girardon infrastructures or the bypass)

<u>NB</u>: Core C3 where the limit was not observed was excluded from further analyses

Grain-size (um)

• The grain-size limit coincides with an increase in contamination

- The grain-size limit coincides with an **increase in contamination**
- ¹³⁷ Cs peak attributed to the 1960s (nuclear tests)
- Emergence of PCB contamination ~ at the same depth
- \rightarrow The top 30 cm from the cores dates corresponds to the 1950s or earlier!

- The grain-size limit coincides with an increase in contamination
- ¹³⁷ Cs peak attributed to the 1960s (nuclear tests)
- Emergence of PCB contamination ~ at the same depth
- \rightarrow The top 30 cm from the cores dates corresponds to the 1950s or earlier!
- → Grain-size limit = Girardon infrastructures!

The grain-size limit also corresponds to a **major reflector** on the GPR surveys

 \rightarrow Infrastructure-induced legacy sediments form a continuous layer in study area 2

Grain-size limit found in 4 out 5 cores in PBN and 3 out of 5 cores in DZM

- Grain-size limit found in 4 out 5 cores in PBN and 3 out of 5 cores in DZM
- BUT the chronology is not so straightforward...

¹³⁷Cs, PCBi and PCDD/Fs in cores C3c and C18b in study area 1 (PBN)

- Grain-size limit found in 4 out 5 cores in PBN and 3 out of 5 cores in DZM
- BUT the chronology is not so straightforward...

- Grain-size limit found in 4 out 5 cores in PBN and 3 out of 5 cores in DZM
- BUT the chronology is not so straightforward...

 \rightarrow based on those first time-markers (more data coming), the limit in both areas does not correspond to the implementation of either infrastructure!

- > Natural disconnection?
- Delayed effect from infrastructures?
- Responses to infrastructure in different study areas might differ based on the initial hydraulic connectivity

Work in progress!

CONCLUSIONS AND OUTLOOKS

- Hypothesis validated: infrastructure-induced legacy sediments were identified in the 3 study areas:
 - > They were dated and attributed to the Girardon infrastructures in study area 2
 - Sediments with similar characteristics were found on the remaining two areas; *however* they could not be chronologically linked to either river infrastructure *yet*.
- The methodology (geophysics + analysis of sediment cores) allows the investigation of fluvial sediments in a time and cost-efficient manner.
- Challenges in relation with infrastructure-induced legacy sediments:
 - ➤ Disconnectivity channel/flooplain → Biodiversity? Flood risk management?
 - ➤ Ground creation → Property? Contamination?
 - > Ubiquitous on engineered rivers?

THANK YOU FOR YOUR ATTENTION!

References :

- Bábek et al. (2008) *Journal of Soils and Sediments* 8:165–176.
- Brown et al. (2013) *Anthropocene* **1**: 3–13.
- Coxon et al. (2016) *Science of The Total Environment* **568**: 402–414.
- Dalton et al. (2014) *Anthropocene* **5**: 9–21.
- Dietze et al. (2012) Sedimentary Geology 243: 169–180.
- Martin (2015) *Geomorphology* **235**: 52–62.
- Meade and Moody (2010) Hydrological Processes 24: 35–49.
- Novotny (2004) *Journal of Environmental Engineering* **130**: 674–683
- Pavlowsky et al. (2017) *Geomorphology* **299**: 54–75.
- Starkel et al. (2006) *CATENA* 66: 24–33.
- Tockner (2009) Rivers of Europe. Elsevier.
- Weltje and Prins (2007) *Sedimentary Geology* **202**: 409–424.
- Wohl (2015) *Earth-Science Reviews* **147**: 30–53

SUPPLEMENTARY INFORMATION: PCA ON X-RAY FLUORESCENCE

contamination levels in the different cores

F1 coordinates

Supplementary information

SUPPLEMENTARY INFORMATION: XRF RESULTS IN STUDY AREA 1

Supplementary information

SUPPLEMENTARY INFORMATION: XRF RESULTS IN STUDY AREA 3

Supplementary information