

VALSE

SedNet Conference 2021

Recycling of river sediments to produce raw materials for construction sector – Upscaling of mineral processing techniques to supply a large batch of sediment

HENRY Mathieu June 29th, 2021

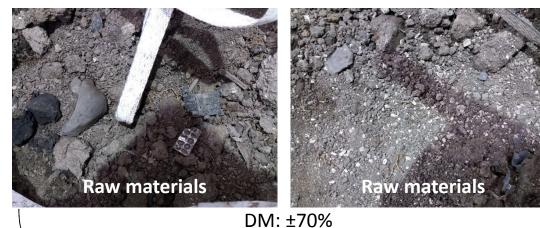
River Sediments

Regular dredging to maintain shipping and hydraulic flow:

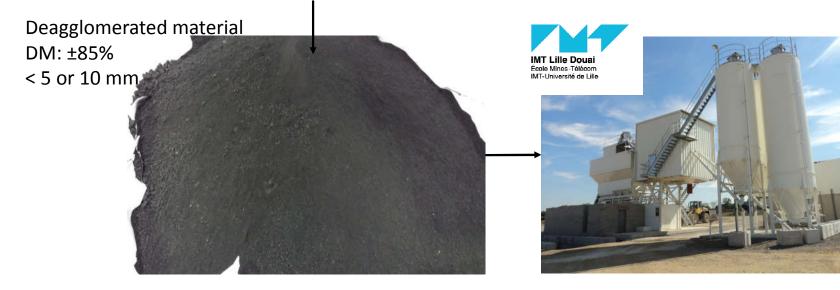
- Generally considered as waste \rightarrow landfilled
- However, potential source of mineral materials:
 - Granulates
 - Sand
 - Silt
 - Clay

Mainly for building sector

- Can be obtained by mineral processing technique
 - Simple
 - Cheap
 - Without chemicals

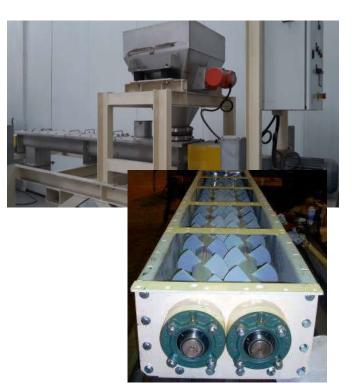


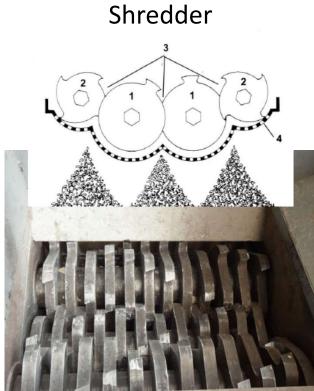
VALSE



Direct integration of sediments inside concrete

Final goal: treat 16 tons of materials to build a bicycle path: → Preliminary trials → Trials on 1 m³ → Upscaling

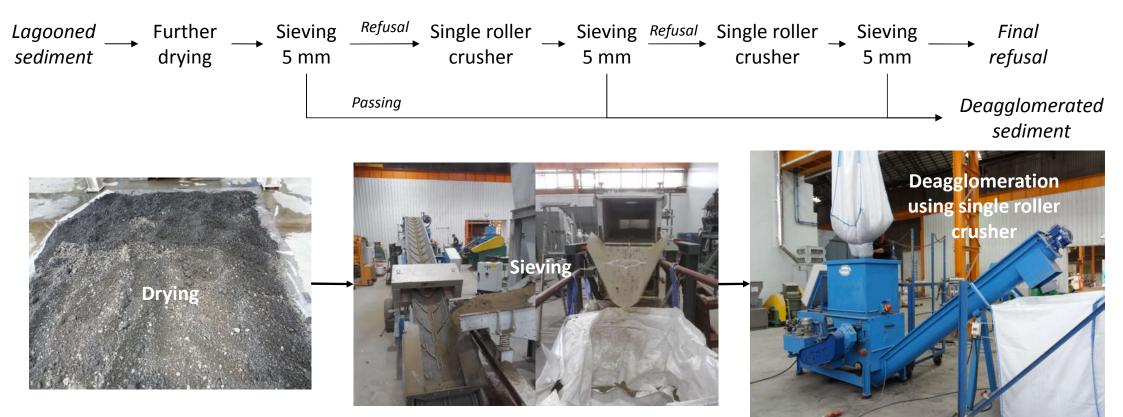



Aim: replacing a certain percentage (± 35%) of the sand (0/2 mm) fraction by sediment Also contains granulates 2/6 and 6/14

Preliminary trials

Only on few kg, to evaluate the technologies Blade mixer Shr

VALSE


Single roller crusher Single roller Push-piece

Preliminary trials on 1 m³

Combination of sieving, drying and single roller crushing to deagglomerate **VALSE** a sediment

Preliminary trials on 1 m³

	Steps	Recovered (kg)	Mass balance	VALSE
Feed		889 kg		
After Drying		689 kg		
Deagglomerated sediment	After first sieving	217 kg	24.4%	
	After first roller crusher and sieving	314 kg	35.3%	
	After second roller crusher and sieving	72 kg	8.1%	
	Total	603 kg	67.8%	
Non-deagglomerated sediment		78 kg	8.8%	

Nevertheless:

- Further drying after natural dehydration in lagoon
- Sieving at 5 mm less common in dry way
- High amount of final refusal
- High number of successive steps with similar equipment
- Low flow rate (0.1 to 0.25 m³/h)
- ightarrow Not suitable for a large volume

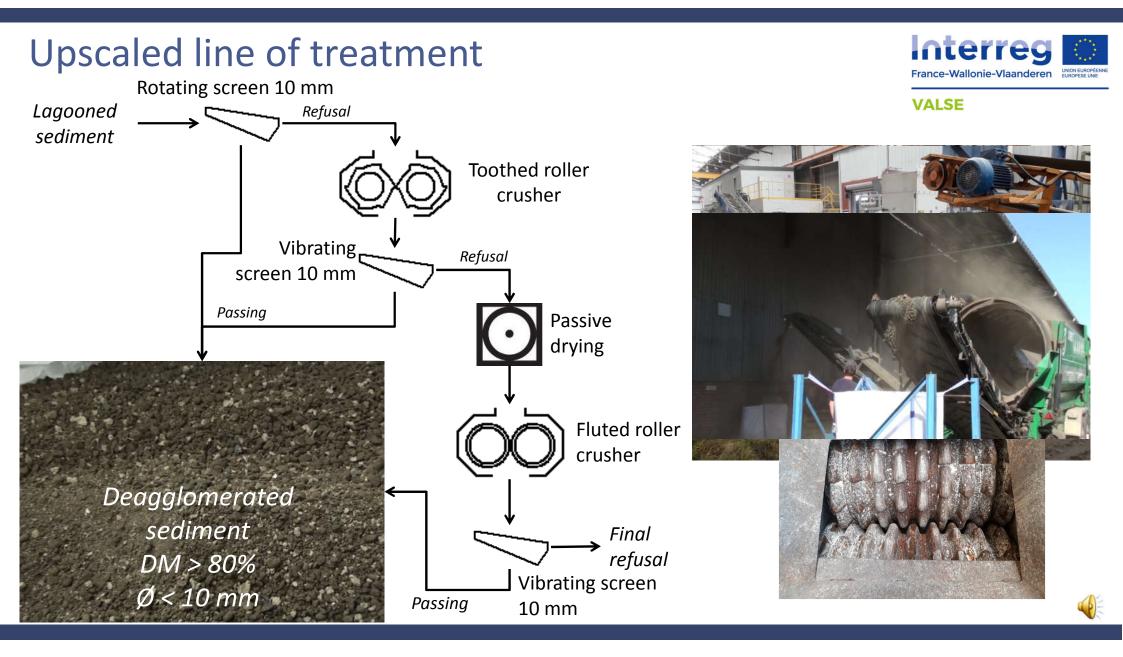
Upscaling

Aim: treat 16 tons of materials

- Increasing of the sieve aperture: 5 mm \rightarrow 10 mm
- Low flow rates \rightarrow Using of two-cylinders roller crusher

Toothed roller crusher

$\overline{0}$

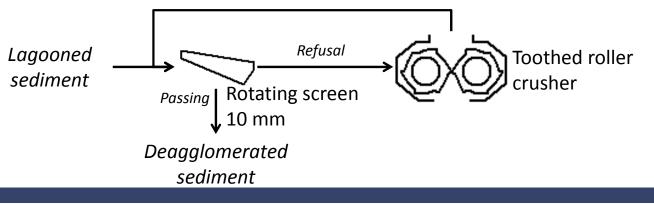

• Drying of a large quantity of sediment \rightarrow Shift the drying step after sieving and crushing

VALSE

Trial with upscaled line of treatment

	Steps	Recovered (kg)	Mass balance	VALSE
Feed		16,612.0		
Deagglomerated sediment	After first sieving	6,522.5	39.3%	
	After first roller crusher and sieving	4,456.4	26.8%	
	After second roller crusher and sieving	2,450.0	14.7%	
	Total	13,428.9	80.8%	
Non-deagglomerated sediment		30.0	0.2%	

- Very low amount of final refusal
- Only 80% of recovered deagglomerated sediment
 - Small loses in each steps
 - Drying due to long time storage, use of energy intensive crushing and further passive drying



Conclusion

- Validation of roller crusher technologies
- Allow to treat with high flow rate a large amount of materials
- By-passing of initial further passive drying
- Decreasing the amount of final refusal

Perspectives

- 13.5 tons supplied to SPW to build a concrete bicycle path
- Construction between March and May 2021
- Possibility to create a mobile plateform

Pictures: https://valse.info/

Acknowledgments

• Partners:

France-Wallonie-Vlaanderen

VALSE

VALSE

Thanks for your attention

Some questions?

Centre Terre et Pierre asbl Mathieu HENRY *Chercheur* Chaussée d'Antoing, 55 B-7500 Tournai, Belgique T: +32 (0)69 88 42 31 mathieu.henry@ctp.be www.ctp.be

