

Economic Modelling and Assessment of the Economic Benefits of Beneficial Use of Dredged Sediment

Dr. Joe Harrington ^a, Ross O'Sullivan ^a, Hamilton A. ^b, Brano Batel ^a,

^a School of Building & Civil Engineering & Sustainable Infrastructure Research & Innovation Group, Munster Technological University, Cork, Ireland

^b Scottish Canals, Glasgow, Scotland

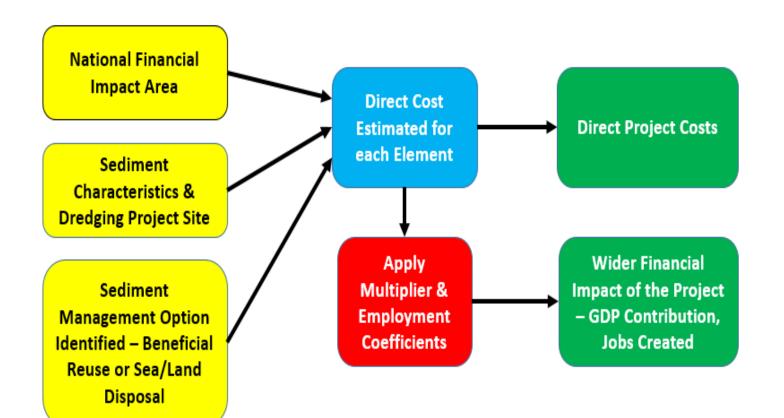
Presented at 12th International SedNet Conference (online), Lille, France 29th June 2021

Outline of Presentation

- The SURICATES Project An Introduction
- The Economic Model
 - Overview
 - Outputs
 - Geographic Spread & Downscaling
 - Sediment Management Scenarios
- Model Application
 - Castletownbere Fishery Harbour, Ireland
 - SURICATES Pilot Site, Falkirk, Scotland
- Conclusions

The SURICATES Project – An Introduction

- SURICATES Sediment Uses as Resources In Circular And Territorial EconomieS (2018-2022)
- Funding Programme: EU Interreg NWE
- Aim to increase sediment reuse for erosion & flood protection
- A range of models & tools being developed, and supported and complemented by Pilot Sites.
- Tools developed include GIS, Direct Cost, Environmental and Economic Models
- Integrated decision making tools to inform the sediment management sector.



The Economic Model – An Overview

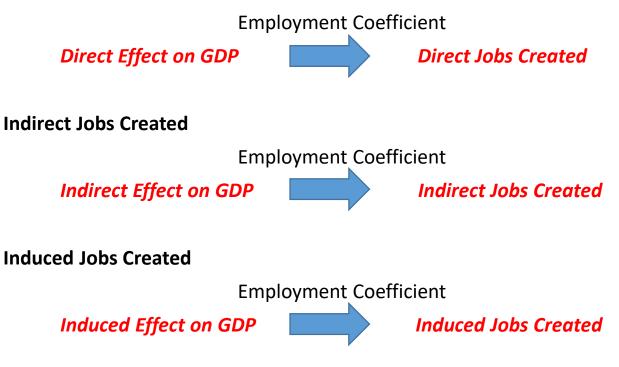
- The model focuses on the **Economic Analysis and Evaluation** of sediment management projects
- The approach used is based on **Multipliers** derived from input-output analysis of economic activity
- These input-output models generate a **Multiplier Index** that measures the total effect of an increase in investment on employment or income
- A comprehensive unit costs database has been compiled
- The model has been initially developed for application in the SURICATES Partner Countries of Ireland, Scotland, France and the Netherlands (and the United Kingdom).

- **Direct effect on GDP** (direct costs) are the actual costs associated with completion of the dredging project. The total direct cost of a project is the sum of all the individual process unit costs by the associated quantity involved
- Indirect effect on GDP is the result of business-to-business transactions caused by direct effects. The businesses benefiting from the direct effect subsequently increase spending at other local businesses
- Induced effect on GDP is the result of increased household income caused by the direct and indirect effect. Households increase spending at local businesses. The induced effect is a measure of this increase in household-to-business activity.
- The direct jobs created are those jobs directly associated with the project work
- The indirect jobs created represent the number of jobs supported by business-to-business transactions due to the economic activity generated by the project
- **The induced jobs created** represent the number of jobs supported by household spending due to the economic activity generated by the project.

Effects on GDP – An Overview

- Direct Effect on GDP (Total Cost) Sum of the individual process unit costs multiplied by the associated quantity Direct Effect (Cost) = $\sum_{i=1}^{n} (Unit Cost * Quantity)_i$
- Indirect Effect on GDP Calculated using the Type I Output Multiplier. A Type I Output Multiplier can be derived from the Industry by Industry Symmetric Input-Output Tables using the Leontief Inverse Matrix

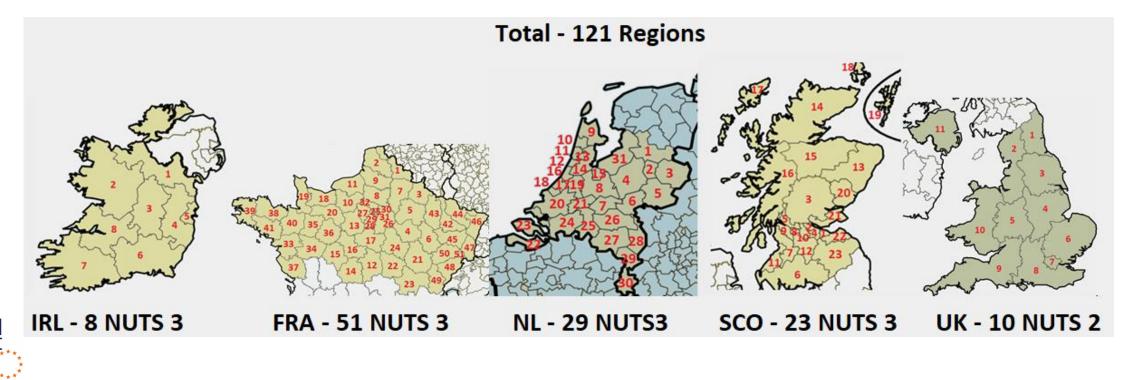
• Induced Effect on GDP – Calculated using the Type II Output Multiplier. The steps involved in the derivation are similar to the Type I Approach Output Multiplier derivation but contains additional data on sectoral wages.


Effects on Jobs Created – An Overview

• Employment Coefficients - derived by dividing the *Full Time Equivalent jobs* in a given industry sector by the level of *Total Output (€)* in that industry

Employment Coefficient _i = Full Time Equivalent Jobs _i / Total Output _i [jobs per € invested]

• Direct Jobs Created



Sec

The Economic Model - Geographic Spread and Downscaling

- The model is downscaled to a regional NUTS 3 level (except with the UK at NUTS 2 level)
- Application of Simple Location Quotients (SLQ) by country
- The Simple Location Quotient approach allows quantification of the concentration of a particular industry or occupation in a region compared to the national scale.

The Economic Model – Some Detail

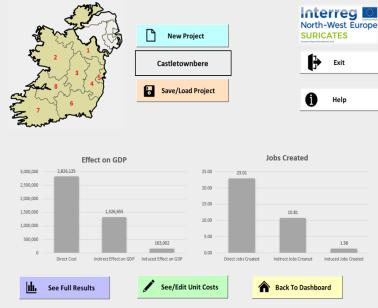
- Different NUTS levels
- 9 sediment management scenarios:

Land Reclamation

Wetland Creation

Beach Nourishment

Concrete Applications

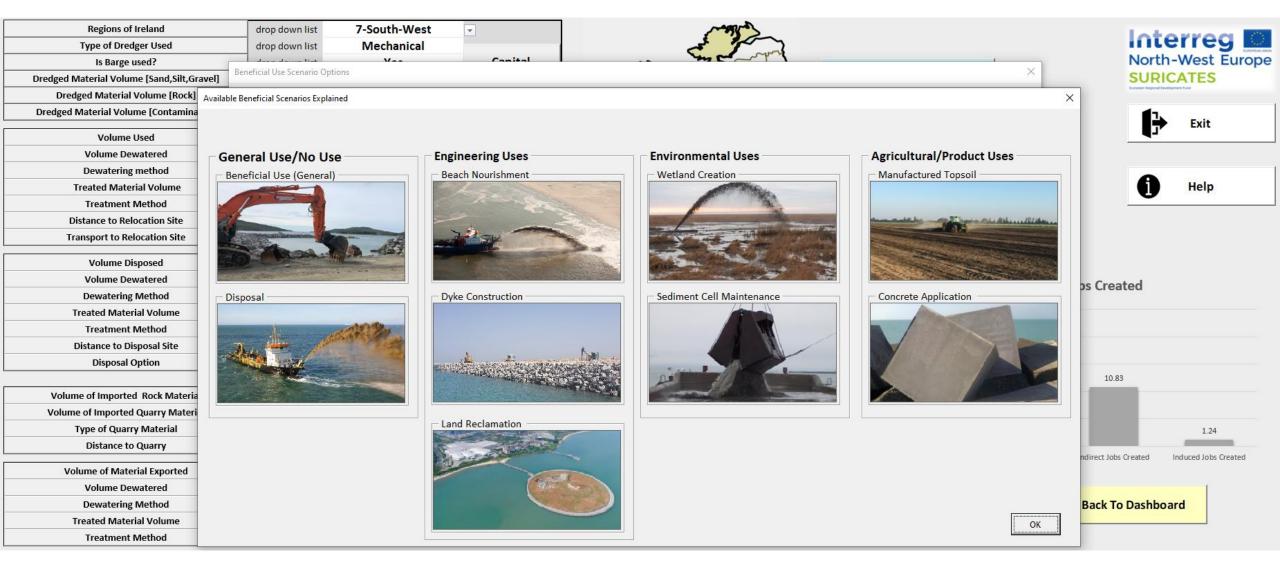

Sediment Cell Maintenance Manufactured Topsoil

Dike Construction

General Beneficial Use Disposal (Sea, Land)

- Individual processes for each scenario
- Direct cost database for each country

Regions of Ireland	drop down list	7-Sout	th-West		
Type of Dredger Used	drop down list	Mechanical			
Is Barge used?	drop down list	Yes		Capital	
Dredged Material Volume [Sand,Silt,Gravel]	mª	48,383		Dredging	
Dredged Material Volume [Rock]	m ^a	17	,617		
Dredged Material Volume [Contaminated]	mª		0		
Volume Used	m³	66	,000		
Volume Dewatered	m³	66	,000		
Dewatering method	drop down list	Na	tural	Land	
Treated Material Volume	mª		0		
Treatment Method	drop down list	None		Reclamation	
Distance to Relocation Site	km	0.1			
Trasport to Relocation Site	drop down list	Land transport			
Volume Disposed	m³		0		
Volume Dewatered	mª		0		
Dewatering Method	drop down list	None		No Disposal	
Treated Material Volume	m³	0			
Treatment Method	drop down list	None			
Distance to Disposal Site	km	0			
Disposal Option	drop down list	None			
		Import 1	Import 2	Import 3	
Volume of Imported Rock Material	m³	18,833		11,528	
Volume of Imported Quarry Material	m ^a		2,766		
Type of Quarry Material	drop down list	None	Aggregate	None	
Distance to Quarry	km	5	80	120	
Volume of Material Exported	m³		0		
Volume Dewatered	m³	0			
Dewatering Method	drop down list	None		No Export	
Treated Material Volume	m³		0		
Treatment Method	drop down list	N	one		



Sediment Management Scenarios

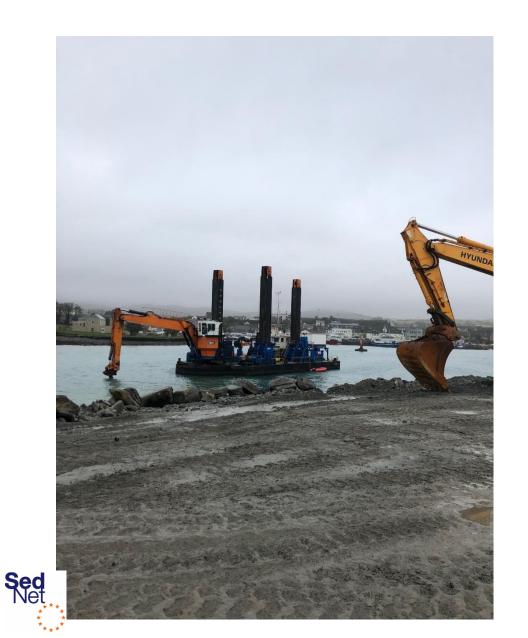
Model Application

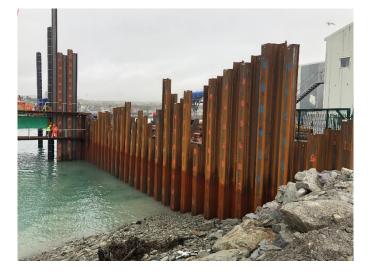
• The Economic Model has been applied for site specific sediment management projects at:

Castletownbere Fishery Harbour Development, Ireland

SURICATES Pilot Site, Falkirk, Scotland

Model Application – Castletownbere Fishery Harbour Development, Ireland


- Owner: National Department of Agriculture, Food & Marine
- Contractor: L&M Keating Ltd.
- Construction of a new quay structure and associated infilling and land reclamation
- Dredging of a berthing pocket and a navigation channel
- Construction of two new breakwater structures
- Dredged sediment used as reclamation material and for the quay wall and breakwaters
- Project commenced in 2018
- Overall Project Cost: €25 million (approx.)
- Sediment Management Project Cost: €3 million



Model Application – Castletownbere Fishery Harbour Development, Ireland

- 66,000 m³ (fine material 48,383m³, rock 17,617m³)
- Rock as quay wall backfill
- Fine material as land reclamation material
- Dredged sediment dewatered naturally; no treatment required
- 33,127 m³ of material imported to site (rock and aggregate)
- Dredged sediment transported by truck over a short land distance -100 m

North-West Europe

Model Output - Results

Regions of Ireland	drop down list	7-South-West		- Aller		latarrad
Type of Dredger Used	drop down list	Mechanical		as and		Interreg
Is Barge used?	drop down list	Yes	Capital	an izsi j		North-West Eu
Dredged Material Volume [Sand,Silt,Gravel]	m³	48,383	Dredging	1 54 L 0 (1)	New Project	SURICATES
Dredged Material Volume [Rock]	m³	17,617				European Regional persopherit rona
Dredged Material Volume [Contaminated]	m³	0		the 2 thing is	Castletownbere	Exit
Volume Used	m³	66,000		₩ 3 3 7	Castletownbere	
Volume Dewatered	m³	66,000		45		
Dewatering method	drop down list	Natural		The fines	Save/Load Project	
Treated Material Volume	m³	0	Land	S ~ ~ ~	_	fi Help
Treatment Method	drop down list	None	Reclamation	E 7 mart		
Distance to Relocation Site	km	0.1		En un alternation		
Trasport to Relocation Site	drop down list	Land transport				
Volume Disposed	m³	0				
Volume Dewatered	m³	0		Effect on GDP		Jobs Created
Dewatering Method	drop down list	None				
Treated Material Volume	m³	0	No Disposal	3,000,000 2,826,125	25.00	23.01
Treatment Method	drop down list	None		2,500,000	20.00	
Distance to Disposal Site	km	0		2,000,000		
Disposal Option	drop down list	None			15.00	
		Import 1 Import 2	Import 3	1,500,000 1,326,655		10.81
Volume of Imported Rock Material	m³	18,833	11,528	1,000,000	10.00	
Volume of Imported Quarry Material	m³	2,766		500.000	5.00	
Type of Quarry Material	drop down list	None Aggregate	None	500,000	163,002	1.38
Distance to Quarry	km	5 80	120	0 Direct Cost Indirect Effect on GE	0.00 DP Induced Effect on GDP Direc	Jobs Created Indirect Jobs Created Induced Jobs Crea
Volume of Material Exported	m ³	0				
Volume Dewatered	m³	0			•	
		Alexa e	No Export	III. See Full Results	See/Edit Unit Costs	Back To Dashboard
Dewatering Method	drop down list	None	NO Export	See Full Results	<i>b</i> ,	
Dewatering Method Treated Material Volume	drop down list m³	0		Jee Full Results	<i>B</i> ,	••

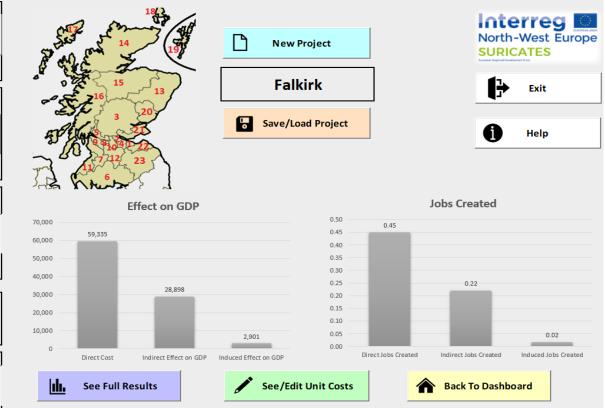
	Simulated	Actual	Indirect Effect (GDP)	€ 1,326,655
Direct Effect (GDP)	€ 2,826,125	€ 3,000,000	Induced Effect (GDP)	€ 163,002
Jobs Created	23.01 FTE	25 FTE	Indirect Jobs Created	10.81 FTE
			Induced Jobs Created	1.38 FTE

Model Application – Falkirk Site, Scotland

- Owner: Scottish Canals
- Dredged sediment mechanically dredged (approximately 500m³) from the Forth and Clyde Canal near Falkirk, Scotland
- An EU Interreg SURICATES Pilot Project
- Project undertaken in 2020
- Overall Project Cost: €57,000

Model Application – Falkirk Site, Scotland

- A bio-engineering pilot scheme
- Dredged sediment dewatered naturally
- Treatment method involved planting the material with reed canary grass (Phytoconditioning)
- Dredged sediment transported 1.8km via canal and 38km by truck



Model Output - Results

Regions of Scotland	drop down list	2-Falkirk			
Type of Dredger Used	drop down list	Mechanical		Capital Dredging	
Is Barge Used?	drop down list	Yes			
Dredged Material Volume [Sand,Silt,Gravel]	m³	500			
Dredged Material Volume [Rock]	m³				
Dredged Material Volume [Contaminated]	m³				
Volume Used	m³	5	00		
Volume Dewatered	m³	50	00		
Dewatering method	drop down list	Natural			-
Treated Material Volume	m³	500		Beneficial Use (General)	
Treatment Method	drop down list	Bioremediation			
Distance to Relocation Site	km	39.9			
Trasport to Relocation Site	drop down list	Multiple Transport			
			_		
Volume Disposed	m³	0			
Volume Dewatered	m³	0			
Dewatering Method	drop down list	None			
Treated Material Volume	m³	0		No Dispos	sal
Treatment Method	drop down list	None		ļ	
Distance to Disposal Site	km	0			
Disposal Option	drop down list	None			
		No Import	No Import	No Import	
Volume of Imported Rock Material	m³	0	0	0	
Volume of Imported Quarry Material	m³	0	0	0	
Type of Quarry Material	drop down list	None	None	None	
Distance to Quarry	km	0	0	0	
Volume of Material Exported	m³	m³ 0			
Volume Dewatered	m³	0			
Dewatering Method	drop down list	None		No Expor	rt
Treated Material Volume	m ³	0			-
Treatment Method	drop down list	None		1	
L					

	Simulated	Actual	Indirect Effect (GDP)	€ 28,898
Direct Effect (GDP)	€ 59,335	€ 57,157	Induced Effect (GDP)	€ 2,901
Jobs Created	0.45 FTE	0.65 FTE	Indirect Jobs Created	0.22 FTE
1			Induced Jobs Created	0.02 FTE

Conclusions

- An Economic Model has been developed for a range of sediment management scenarios
- The Economic Model provides full Economic Effects and is downscaled to a regional NUTS 3 level for the SURICATES Partner Countries
- The model provides a tool to evaluate the wider economic impacts of sediment management projects
- The model has a potential to facilitate and support the stakeholder decision making process (in conjunction with the application of the other SURICATES Tools)
- The Economic Model has been applied to Real Sediment Management Projects in Ireland and Scotland
- On-going work involves application of the Economic Model for a range of Sediment Management Projects across the SURICATES Partner Countries.

Acknowledgements

- Funding received for the SURICATES Project through the INTERREG NWE Programme and European Regional Development Fund (ERDF)
- Irish Central Statistics Office, the United Kingdom Office for National Statistics, the Scottish Government's National Statistics Office, The Organisation for Economic Co-operation and Development (OECD), and Eurostat who provided economic data.
- SURICATES Project Partners:

Université de Lille Sciences et Technologies, France
IXSANE, France
Bureau de Recherches Géologiques et Minières, France
TEAM2, France
ARMINES, France
Deltares, The Netherlands
Port of Rotterdam, The Netherlands
University of Strathclyde, Scotland
University College Cork, Ireland

Thank You

