

12th International SedNet Conference (online) 28 June – 2 July 2021

Corresponding author: Stefania.nin@crea.gov.it

Introduction and Objectives

The relocation of dredged sediment from harbors and waterways in horticulture appears challenging due to the possible transfer of contamination to soil, plant and humans but, at the same time, could be a strategy for reducing the intensive use of peat in soilless culture. Aim of the SUBSED project is to demonstrate that it is possible to convert a waste into a supply (a commercial substrate) through the application of environmentally and economically sustainable practices.

Quality assessment in wild strawberry fruit and basil leaf from plants cultivated on dredged remediated sediment (SUBSED - LIFE17 ENV/IT/000347

Tozzi Francesca¹, Turchi Adelaide², Antonetti Maurizio¹, Prisa Domenico¹, Pecchioli Simona², Masciandaro Grazia³, Doni Serena³, Castellani Maria⁴, Nin Stefania¹

¹CREA, Research Centre for Vegetable and Ornamental Crops, Pescia (PT), Italy; ²Carbonsink, Sesto Fiorentino (FI), Italy; ³ISE-CNR, Institute on Terrestrial Ecosystems – National Research Council of Italy, Pisa (PI), Italy; ⁴ Flora Toscana Società Agricola Cooperativa Pescia (PT), Italy.

Materials and Methods

SEDIMENT-BASED SUBSTRATE. Sediments, dredged from the Leghorn port in 2008-2009, were subjected to phytoremediation for three years. The phytoremediated sediment underwent landfarming (periodical aeration and irrigation by mechanical handling) for three months prior to their use for plant cultivation. The treated sediment was used alone or mixed with peat-based substrate (60%) peat, 40% pumice) to obtain the following treatments: TS100 (100% treated sediment), TS50 (1/1 peat-based substrate/treated sediment v/v), and TS0 (100% peat-based substrate) considered as the control treatment.

PLANT MATERIAL. Basil and wild strawberry were chosen as model plant species since they are good indicators of the chemical and physical quality of the tested substrates. Basil (Ocimum basilicum L.) seeds, cvs. Genovese and Valentino, and certified wild strawberry (Fragaria vesca L.), cv. Regina delle Valli were used as plant material.

12th International SedNet ConferencePreliminary results(online) 28 June - 2 July 2021Physicochemical characteristics

Experimental design

Wild strawberry	Basil				
Environment: greenhouse					
Substrate mixture: TS100, TS50, TS0					
Water regime:					
WR1 - normal WR2 - low (reduced by 30%) WR3 - very low (reduced by 50%)					
Plantlets/substrate * water regime Seeds/substrate * water regime * plot: cultivar plot:					
5 in 50-L boxes 276 seeds in 12 0.5-L (23 seeds/pot)					
Plot replicates: 3					
Total strawberry plantlets:	Total seeds per cultivar:				
90	7452				

Physicochemical characteristics	TS0	TS50	TS100	L.D. 75/2010	L.D. 152/2006
Dry bulk density (g cm-³)	0.31	0.58	0.67	≤ 0.95	n.a
Porosity (%)	90.1	75.1	74.3	n.a	n.a
Air capacity (%)	25.6	19.5	6.0	n.a	n.a
Water capacity (%)	64.5	55.62	73.7	n.a	n.a
Easy available water (%)	21.4	11.2	21.5	n.a	n.a
EC (dS m⁻¹)	0.40	0.28	0.20	≤ 1.0	n.a
рН	6.4	7.3	7.8	4.5-8.5	n.a
N-NH ₃ (mg Kg ⁻¹)	277.0	29.2	2.2	n.a	n.a
N-NO ₃ (mg Kg ⁻¹)	271.7	118.8	59.4	n.a	n.a
Humidity (%)	14.9	4.8	2.1	n.a	n.a
Total nitrogen (%)	1,3	0,3	0,1	n.a	n.a
Total organic carbon (%)	27,7	8,7	0,7	≥ 4	n.a
Phosphorus (g Kg-1)	518,0	715,0	662,0	n.a	n.a
Metals				n.a	n.a
Cu (mg Kg-1	12.1	35.5	37.1	≤ 230	≤ 120
Zn (mg Kg-1)	18.1	167.4	188.5	≤500	≤150
Ni (mg Kg ⁻¹)	6.5	50.0	50.3	≤ 100	≤ 120
Cr (mg Kg ⁻¹)	5.2	64.1	59.4	n.a	≤ 150
Cr (VI) (mg Kg ⁻¹)	-	-	-	≤ 0.5	≤ 2
Pb (mg Kg ⁻¹)	20.6	35.9	49.5	≤ 140	≤ 100

Basil

Factor/Parameter	Germination %
Cultivar	
Genova	60.2 ns Octobe
Valentino	57.2 ns
Substrate	
TS0 1	61.8 a
TS50	65.6 a
TS100	48.8 b
Water regime	
WR 1 - high	60.4 ns
WR 2 - medium	59.2 ns
WR 3 - Iow	56.4 ns

Mean separation within columns by Duncan's multiple range test (p < 0.01)

12th International SedNet Conference (online) 28 June – 2 July 2021

Basil

Substrate Water regime		Total free	sh weight (g)	Total leaf area (cm ²)		
Substrate	ate Water regime	Genova	Valentino	Genova	Valentino	
TS0	WR1	71	114	2041	3074	
TS50	WR1	48	91	1448	2445	
TS100	WR1	22	43	714	1082	
TS0	WR2	77	109	2271	2850	
TS50	WR2	57	89	1801	2402	
TS100	WR2	20	36	700	1011	
TS0	WR3	37	54	1369	1598	
TS50	WR3	24	41	755	1268	
TS100	WR3	13	21	487	611	

Wild Strawberry

Substrate	Crown Ø (mm)	Plant height (cm)	Leaves (n.)	Fruit Chroma index	Fruit SSC (°Brix)	Fruit pH	Fruit TA
TS100	36.1 b	30.2 a	111.4 a	38.0 a	15.1 a	3.7 b	19.5 b
TS50	39.7 a	29.6 ab	110.9 a	38.3 ab	15.8 a	3.6 b	20.2 a
TS0	34.5 b	27.5 b	118.0 a	36.8 a	15.7 a	3.8 a	18.1 c

Legend: the same letter near each value indicates no significant difference for the parameters across substrate (p<0.05); SSC = Soluble Solids Content; TA = Titratable Acidity (mequiv NaOH/100 g FW)

Substrate	Plant yield (g)			Fruit lenght (mm)	Fruit diameter (mm)
TS100	33.7 a	6.9 b	1,0 b	16.7 a	10.5 b
TS50	41.4 a	6.9 b	1.0 ab	16.6 a	10.0 b
TS0	40.6 a	8.2 a	1.2 a	17.3 a	11.4 a

Conclusions

The remedied sediment proved to be a valid alternative to peat for wild strawberry production. Fruits obtained from plants cultivated on the different growing media displayed similar pomological characteristics. On the other hand, basil production was significantly influenced by the substrate, being total fresh weight and leaf area significantly higher in plants obtained on peat-based growing medium. Plants did not show any visible phytotoxic symptoms or damages.

Strawberry plants grown on TS50: soon after planting (A) and 4 months after planting (B)

TS0 - WR2