

Sustainable North Sea Region http://northsearegion.eu/sulliedsediments



Comparing conventional and integrated sediment-quality assessment of three North Sea region waterways

#### Sonja Faetsch<sup>1</sup>, Susanne Heise<sup>1</sup>

<sup>1</sup>University of Applied Sciences Hamburg, Research group of Applied Aquatic Toxicology

12th International SedNet Conference (online)

29 June 2021



### Background SedNet Workshop 2018 in Hamburg on sediment classification and management decisions<sup>1</sup>

- contained a short exercise mostly restricted to chemical data
- differences in the evaluation of data especially for sediments of low to moderate quality
- variability in decision-making even more pronounced when ecotoxicity data is considered in the decision making
- issue of sediment management guidelines continues to be a relevant topic
- → further work on these aspects appears to be timely and necessary
- different approaches applied to a data set generated within project Sullied Sediments



## Samples

### 6 campaigns

1 autumn 2017 2 spring 2018 3 summer 2018 4 autumn 2018 5 spring 2019 6 summer 2019

#### 3 countries, 3 sites each

| Belgium | A, B, C |
|---------|---------|
| Germany | D, E, F |
| United  | G, H, I |
| Kingdom |         |



### Analysis of samples in 3 lines of evidence (LOEs)

| Sediment of the sector of the | Ecotoxicity                                                                                                                                                                                                                                                                                                                                                                                                      | Benthic<br>community<br>structure                                                                                                                                                           | Physico-                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>125 compounds</li> <li>26 metals &amp; metalloids</li> <li>119 organic contaminants:</li> <li>28 hydrocarbons (nC10-37)</li> <li>17 dioxins and furans,</li> <li>8 organotins</li> <li>1 BFRs (α-,β-,γ-HBCDD)</li> <li>16 PAHs</li> <li>7 PCBs</li> <li>19 pesticides</li> <li>3 emerging contaminants<br/>(diclofenac, triclosan,<br/>PFOS)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ol> <li>algae growth inhibition test<br/>(AGI) elutriate</li> <li>luminescence bacteria test</li> <li>(LBT), elutriate &amp; extracts</li> <li>bacteria contact test (BCT)</li> <li>sediment test <i>H. azteca</i></li> <li>sediment test <i>L. variegatus</i></li> <li>sediment test <i>M. aquaticus</i></li> <li>nematode test</li> <li>sediment test ostracods</li> <li>pore water Thamnocephalos</li> </ol> | <ol> <li>macrozoobenthos<br/>(Belgian Sediment<br/>Index, BSI, SPEAR)</li> <li>meiobenthos<br/>(NemaSPEAR[%]-<br/>index)</li> <li>bacterial community<br/>(functional diversity)</li> </ol> | <ul> <li>grain size<br/>distributions</li> <li>pH, O<sub>2</sub>, redox</li> <li>dry weight</li> <li>organic carbon</li> <li>nutrients (N,P)</li> </ul> |

### Overview





# 1. Chemical assessment



# Comparing limit values of different regulations





### Percentages of samples exceeding limit values



average % of how many samples > limit value of a substance

average % of how many measured values > respective limit value in a sample



## 2. Ecotoxicological assessments



## Classification based on integrated assessment and worst single test result<sup>4,9</sup>

| toxic category                                                                   | No or low impact | Moderate impact |    | severe impact |  |
|----------------------------------------------------------------------------------|------------------|-----------------|----|---------------|--|
| Number of assigned<br>samples based on worst<br>outcome of single test           | 2                | 18              |    | 34            |  |
|                                                                                  |                  |                 |    |               |  |
| hazard class                                                                     | 1                | 2               | 3  | 4             |  |
| number of assigned<br>samples based on<br>integrative assessment of<br>bioassays | 7                | 10              | 26 | 11            |  |

• *n* = 54



# Comparing ecotoxicity evaluations

|      | 1 | no pollution /hazard/ impact                 |                     |                      |  |
|------|---|----------------------------------------------|---------------------|----------------------|--|
| ses  | 2 | of no<br>concern                             | potential<br>hazard | mild acute<br>impact |  |
| clas | 3 | critically<br>polluted                       | moderate<br>hazard  | acute<br>impact      |  |
|      | 4 | Dangerous / high/ severe hazard<br>or impact |                     |                      |  |





## 3. Integrative assessment



# TRIAD

| Sample | Chemical | Ecotox | Ecology | quality   | Global<br>class | GÜBAK     | trigger<br>BSI >6 |
|--------|----------|--------|---------|-----------|-----------------|-----------|-------------------|
| A4     | -        | +      | +       | poor      | 3               | case 3    |                   |
| B4     | +        | +      | -       | poor      | 3               | case 3    |                   |
| C4     | +        | +      | +       | very poor | 4               | case 3    |                   |
| D4     | +        | +      | -       | poor      | 3               | case 3    |                   |
| E4     | -        | +      | +       | poor      | 3               | case 3    |                   |
| F4     | _        | +      |         | moderate  | 2               | case 3    |                   |
| G4     | +        | +      | -       | poor      | 3               | case 3    |                   |
| H4     | -        | +      | +       | poor      | 3               | >63µm>90% |                   |
| 4      | _        | +      | _       | moderate  | 2               | case 3    |                   |



### Summary

- different types and numbers of chemical, ecotoxicological and ecological parameters considered
- different assessment procedures and limit values used
- varying results of bioassays between laboratories and frameworks
- less samples classified as highly toxic with integrative approaches

- final quality classes of samples differ
- classes colour coded/ named differently

## difficult to compare the sediment qualities between the countries

 well chosen, harmonized (not standardized) framework with regards to implementation of the WFD and the management of dredged material



## Thank you for your attention!



work group Applied Aquatic Toxicology

Any questions, remarks or comments? Contact me @: sonja.faetsch@haw-hamburg.de







## References



#### Literature

[1] SedNet (2019) Workshop on sediment classification and management Decisions – in situ and ex situ, Hamburg, Sep 20-21 2018; [2] de Deckere et al. (2011) Development of sediment quality guidelines for freshwater ecosystems J Soils Sediments (2011) 11:504–517; [3] Chapman (1997) Marine Pollution Bulletin, Vol. 34, No. 6, pp. 368-372, 1997 Environ Int 33:492-501; [4] Heise et al. (2020) Sullied Sediments Report: Development of a BEBA-based-classification system for sediments; [6] GÜBAK-WSV (2009) Joint transitional agreements for the handling of dredged material in German federal coastal waterways; [7] VLAREM II Annex 2.3.1.a/1. Environmental quality standards for water bottoms; [8] Krebs et al. (2000), Small-scale Freshwater Toxicity Investigations 2:281-304; [9] Ahlf and Heise (2005) J Soils & Sediments 5 (1) 16 – 20; [10] VMM Flemish Environment Agency (2000) Handbook for the characterization of the soils of the Flemish waterways, TRIAD; [11] VMM (2020) Waterbodem trigger voor verder onderzoek; [12] UK Environmental agency (2015), Guidance on the classification and assessment of waste WM3;

- Project Sullied Sediments: <u>https://northsearegion.eu/sullied-sediments/</u>
- Icons: https://www.slidescarnival.com/