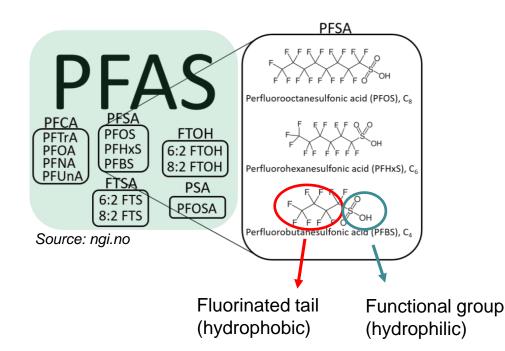


Schweizerisches Zentrum für angewandte Ökotoxikologie Centre Suisse d'écotoxicologie appliquée

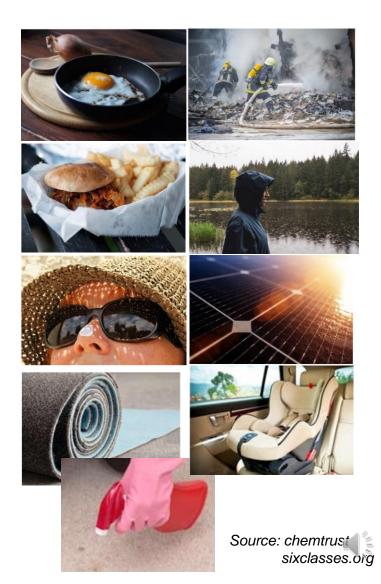
Sediment quality assessment framework for PFAS

<u>Carmen Casado-Martinez</u>, Benoit JD Ferrari Marc Babut, INRAE Lyon (FR) Simona Pascariello, Stefano Polesello, Sara Valsecchi, IRSA-CNR Brugherio (IT)

SedNet 2021

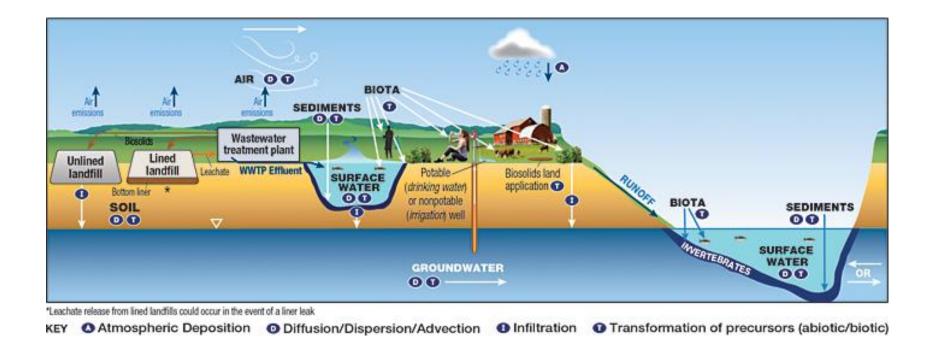

Outline

- BACKGROUND
 - Why PFAS?
 - Setting a common framework for sediment quality assessment in Switzerland
- PREPARATORY STUDY
 - Data acquisition
 - Validation of sediment quality assessment framework
- CONCLUSIONS AND PERSPECTIVES



1. PFAS

 PFAS include 3000+ substances and 4700+ PFAS-related CAS numbers.


PFOS and PFOA are regulated but many others with similar properties still in use -> Is current regulation based on individual substances appropriate?

1. PFAS

PFAS: the «forever chemicals»

- C-F bound extremely stable
- Accumulation in humans through food consumption and drinking water
- Important challenges for the management of PFAS contaminated sites

Stratégie d'évaluation de la qualité des sédiments en Suisse

Étude élaboré sur mandat de l'Office fédéral de l'environnement

Version préliminaire, 22 Avril 2021

oekotoxzentrum centre ecotox

Strategie zur Bewertung der Sedimentqualität in der Schweiz

Studie im Auftrag des Bundesamts für Umwelt

Expected publication date: end 2021.

Study design and sampling strategy

Study design (Chapter 5.1)

Definition of objectives Collection and evaluation of available information Selection of target compounds Matrix selection Requirements for chemical analyses Field quality control

Sampling strategy (Chapter 5.2)

Selection of sites Replicate and composite samples Frequency and time of sampling Equipment Measures to take before fieldwork

Field sampling (Chapter 5.3)

Preliminary measures Collection of sediment Homogenization, sieving and bottling Transport Preservation and storage

Analysis (Chapter 5.4)

Sample pre-treatment Sediment properties Metals Organic (micro-pollutants)

Priority substances for sediment monitoring

CAS	Substance	Туре	Use
330-54-1	Diuron	Herbicide	Herbicide, biocide in urban areas, vineyards, fruits production
2921-88-2	Chlorpyrifos	Insecticide	Insecticide in fruits, vineyards, beets Restrictions as from 2019
52315-07-8	Cypermethrin	Insecticide	Insecticide in fruits, vineyards, beets
107534-96-3	Tebuconazole	Fungicide	Fungicide in wood treatment, cereal crops
85721-33-1 50-28-2	Ciprofloxacin E2 ^{a)}	Antibiotic	Human and veterinary medicine
53-16-7 57-63-6	E1 EE2	Hormones	Contraceptive, breast cancer
3380-34-5	Triclosan	Bactericide	Disinfectant Personal care product, human health Restrictions as from 2015
NA	PBDEs ^{b)} (8 indicators)	Organobromines	Flame retardants
1763-23-1	PFOS ^{c)}	Fluorosurfactant	Industrial and consumer applications
117-81-7	DEHP ^{d)}	Phtalate	Plasticizer
NA	Nonylphenols	Phenols	Nonionic surfactants used in detergents, paints, pesticides, personal care products, and plastics
NA	Octylphenols	Phenols	Synthesis intermediates
21145-77-7	Tonalide	Synthetic musk	Perfumes, cosmetics and laundry detergents
87-68-3	HCBD ^{e)}	Halogenated aliphatic compound	Solvent
NA	PAHs ^{f)} (16 indicators)	Polycyclic aromatic hydrocarbons	Release through pyrolysis
NA	PCBs ^{g)} (7 indicators, PCB 118)	Polychlorinated biphenyls	Banned
7440-50-8	Cu	Trace metal	Materials, agriculture, chemistry
7440-66-6	Zn	Trace metal	Materials, agriculture, chemistry
7439-97-6	Hg	Trace metal	Regulated use
7439-92-1	Pb	Trace metal	Batteries, ammunition

Level 1: classification system based on EQS_{sed} comparison

Classification		Class definition (RQ = MEC/EQS _{sed})	Meaning	
k <i>i</i> .	The measured concentration in the sediment is at least 10 times lower than the quality criterion (EQS _{sed})	RQ < 0.1	500 mit	
Good	The measured concentration in the sediment is between 1 and 10 times lower than the quality criterion (EQS _{sed})	0.1 ≤ RQ < 1	EQS _{sed} met	
	The measured concentration in the sediment is lower than two times the quality criterion (EQS _{sed})	1 ≤ RQ < 2		
	The measured concentration in the sediment is lower than 10 times the quality criterion (EQS _{sed})	2 ≤ RQ < 10	EQS _{sed} exceeded	Level 2: assessment refinement
Bad	The measured concentration is equal or higher than 10 times the quality criterion (EQS _{sed})			

The recommended matrix for analysis and type of evaluation depend on the study objective.

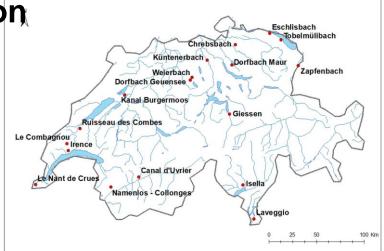
Objective			Monitoring of sediment quality	Diagnosis: identifying the causes of known biological impairment	Assessment & monitoring of potential biological impairment at known hot spots	Trend monitoring	
Problems to solve			 Obtain an overview of biological impact of sediment quality on a cantonal or regional scale, both spatially and temporally Find indication for biological impacts of sediment quality 	2) Test for contribution of sediments to known ecological impairment (e.g. bad score in MSK modules)	 Monitor the impact at identified hot spots (e.g. point- sources or known discharges) Prioritize sites on the basis of sediment quality Remediation planning and success control 	 Identify spatial and temporal trends of sediment contamination Prioritize sites based on chemical contamination 	
Type of assessment			Ecotoxicological			Chemical	
	шц	Τ	< 5%	Assessment not recommended ^{a)}			
Matrix for	t <63 ction		< 20%				< 63 µm
analysis	sediment <6 mm fraction		20-80%		< 2 mm		$(< 63 \ \mu m \ or) \ 2 \ mm \ ^{b)}$
	% s in 2 i		> 80%				
Evaluation			Classification of sediments into 5 classes through comparison with EQS_{sed}		Classification by comparison with EQS_{sed} or other established threshold ^{d)}		

^{a)} Sampling sites for sediment monitoring should ideally have more than 5% fine fraction (<63 µm) (EC 2010).

c) According to the results from field trials for sites that have high proportion of fines, the measurements are representative for the entire matrix, and hence results can be used for comparison to EQS sed.

^{d)} For non-ionic substances EQS_{sed} are normalized for organic carbon content, accounting for the matrix effect on bioavailability to some extent. Else, measured concentration values have to be compared with established thresholds from older measurements in the region or alternative thresholds values (Chapter 6).

^{b)} The fraction <2 mm can already identify point sources of pollution and spatial trends in sediment contamination when the sediment contains at least 20% fines (< 63 µm) but this may not hold true of all instances.

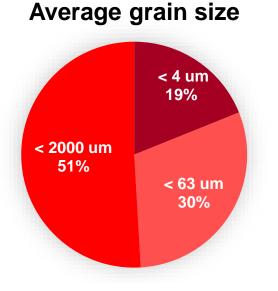

Action categories (information needs)

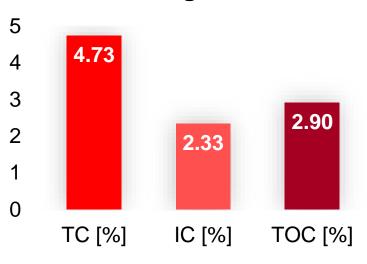
	CATEGORY						
	1	2/4	3	5			
Situation	Exposure and risk known	Exposure is not/hardly known	Risks difficult to evaluate	Exposure known, low risk			
Criteria	Concentrations in CH known, available SQG, Identified risk (RQ≥1)	Substances measured occasionally in CH or in other EU countries	Substances mesurées occasionnellement en CH ou l'UE, données écotoxicologiques manquent	Substances avec RQ <1, concentrations décroissantes ou interdites en CH			
Reccommended action	Candidate for sediment monitoring	Data acquisition campaign	Improvement of ecotoxicological knowledge	Candidate for reduced monitoring, if no other information available			
Substances	PCBs, PAHs, DEHP, metals	PPP, pharmaceuticals, PFAS	Personal care products, PFAS	Lindane, endosulfan, heptachlor,			

Data acquisition in 18 small streams

Different sources of contamination

- Urban settlements: 0 43.2%
- High-intensity agriculture : 0 71.1%
- Low-intensity agriculture: 0.42%
- Forest: 1.1 94%
- Unproductive: 0 9.1%



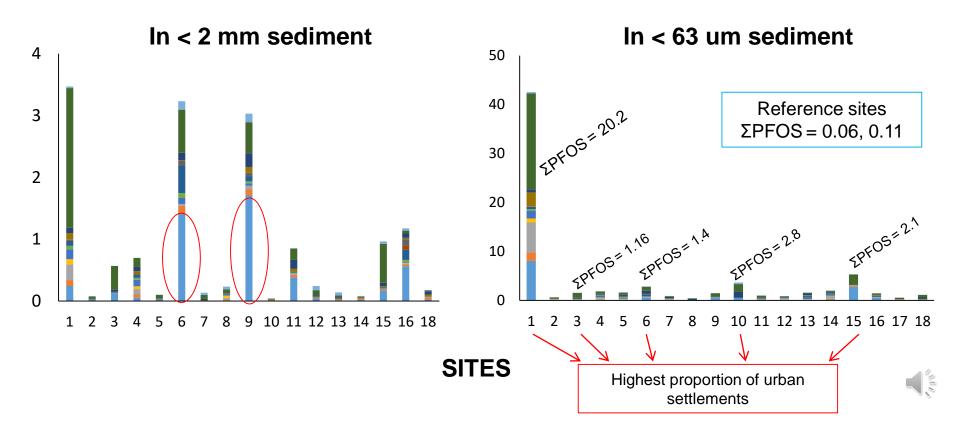


Different types of substrate

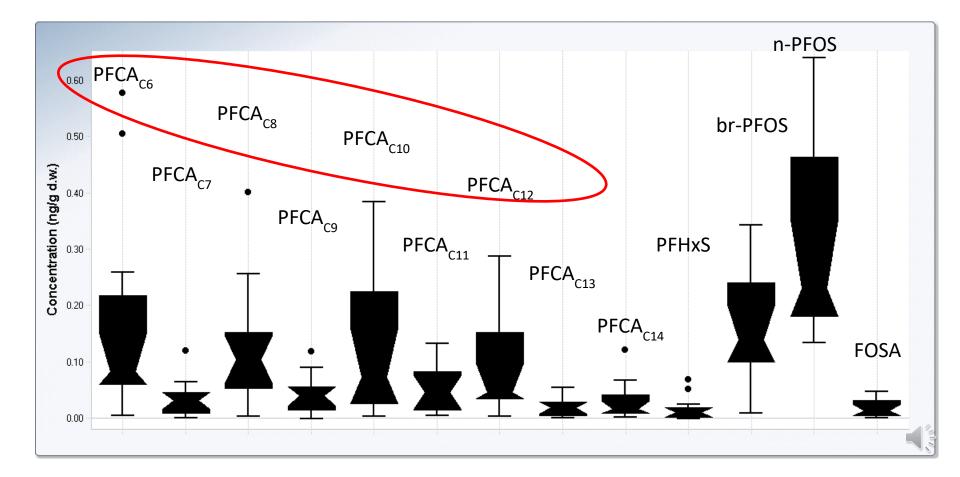
- Grain size: fines 4.5-68%
- Organic carbon: 0.5-13%

Average TOC

Sampling and sample pre-treatment


- Sieving < 2 mm in the field</p>
- Wet sieving < 63 um in the lab</p>

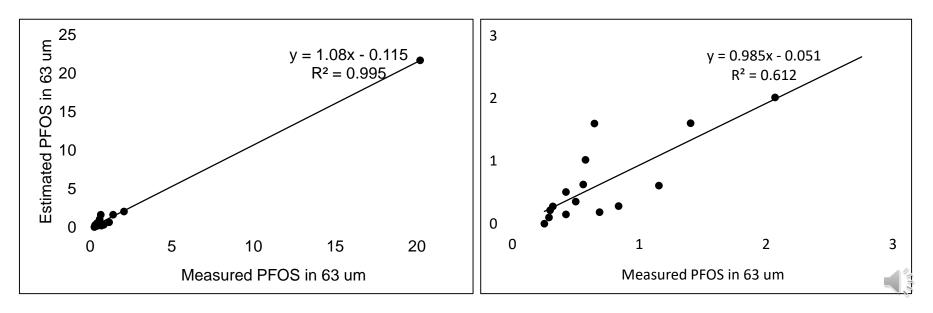
Quantification of perfluoroalkyl compounds:


- PFHxA, PFHpA, PFHxS, PFOA, branched PFOS (br-PFOS), linear PFOS (n-PFOS), ΣPFOS (calculated as br-PFOS + n-PFOS), PFNA, PFDA, PFUnDA, FOSA, PFDoDA, PFTrDA and PFTeDA
- Quantified at IRSA (IT) by liquid chromatography tandem mass spectrometry (HPLC-MS/MS) coupled to on-line turbulent flow chromatography (TFC) for on-line purification of extracts
- Method detection limits: 0.001 to 0.020 ng/g d.w. depending on the compound

Measured concentrations of PFAS in sediments (ng/g dw)

PFHxA
 PFHpA
 PFOA
 PFNA
 PFDA
 PFUnDA
 PFDoDA
 PFTrDA
 PFTeDA
 PFHxS
 br-PFOS
 n-PFOS
 FOSA

 Distribution of congeners in < 2 mm sediments according to number of C for PFCAs



 Estimation of anthropogenic background concentrations (ABC) of PFOS in sediments

This study 90 th PC ref+low impacted sites	ΣPFOS: 0.680 ng/g d.w. (63 um) 0.316 ng/g d.w (2mm) PFHxA: 0.455 ng/g d.w. (63 um) 0.545 ng/g d.w. (2 mm)
Lowest concentrations Lake Geneva (Switzerland) (CIPEL 2017)	PFOS: 0.64 ng/g d.w.
Maximum at Lake Constance Danube (Austria) (Clara et al. 2009)	PFOS: 1 ng/g d.w. (<63 µm) Alpine Lakes < DL
Marine sediments in Norway (Bakke et al. 2010)	PFOS: 0.17 ng/g d.w.
90 th PC (2 MS, 34 sites, N=62) (EC 2011)	PFOS: 3.12 ng/g d.w. (1.98 ng/g including 22 non-detects)

• WFD-CIS Guidance n. 25 on sediment and biota monitoring (EC 2010):

- "whole sediment "may give a direct reflection of pollutant distribution only if the sediments have homogeneous bulk composition" -> recommends the analysis of the <63 µm sediment fraction.
- Suspended matter is an alternative to water samples for monitoring certain (organic) non polar pollutants when levels of concentrations in the water phase are below quantification limits or when water quality criteria are challenging for compliance check (EC 2010).

Description	Value	Development method	Uncertainty	Reference
ABC _{2mm}	0.32	PC90 at reference and low impacted sites computed for the sediment fraction <2 mm	Not effect-based	This study
Direct toxicity				
(1) QS _{sed,AF,eco}	13.5	EU TGD (EC 2018): based on NOEC for <i>Monoporeia affinis</i> survival of 1300 ng/g d.w.(1350 ng/g d.w. for a sediment with 5% OC) and AF of 100	Too few effect data from spiked sediment toxicity tests, high AF to account for uncertainty	This study
(2) QS _{sed,EqP,eco}	22.1	EU TGD (EC 2018): derived using the EqP and a QS _{freshwater} of 230 ng/L	Preliminary QS	This study

Description	Value	Development method	Uncertainty	Reference
ABC _{2mm}	0.32	PC90 at reference and low impacted sites computed for the sediment fraction <2 mm	Not effect-based	This study
Direct toxicity				
(1) QS _{sed,AF,eco}	13.5	EU TGD (EC 2018): based on NOEC for <i>Monoporeia affinis</i> survival of 1300 ng/g d.w.(1350 ng/g d.w. for a sediment with 5% OC) and AF of 100	Too few effect data from spiked sediment toxicity tests, high AF to account for uncertainty	This study
(2) QS _{sed,EqP,eco}	22.1	EU TGD (EC 2018): derived using the EqP and a QS _{freshwater} of 230 ng/L	Preliminary QS	This study
Secondary poise	oning for	top predators		
(3) QS _{sed,EqP,sec.pois.}	0.19	EU TGD (EC 2018): derived using the EqP and a QS _{freshwater} of 2 ng/L	Preliminary QS	This study
(4) QS _{sed,sec.pois} .	1.85	Babut (2018): derived from a QS _{biota} of 33 ng/g w.w. to protect top predators from fish consumption	Derivation method not validated Relatively small BSAF database	This study
Secondary poise	oning for	human health		
(5) QS _{sed,hh food}	0.51	Babut (2018): derived from a EQS _{biota} of 9.1 ng/g fish w.w.	Derivation method not validated Relatively small BSAF database	Babut (2018)

Sediment quality assessment at the studied sites

	Protection objective			
Site	Direct toxicity	Sec. Pois.	Human health	
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
18				

Classification		Class definition (RQ = MEC/EQS _{sed})	Meaning	
Very good	The measured concentration in the sediment is at least 10 times lower than the quality criterion (EQS _{sed})	RQ < 0.1		
Good	The measured concentration in the sediment is between 1 and 10 times lower than the quality criterion (EQS _{sed})	0.1 ≤ RQ < 1	EQS _{sed} met	
Moderate	The measured concentration in the sediment is lower than two times the quality criterion (EQS _{sed})	1 ≤ RQ < 2		
Unsatisfactory	The measured concentration in the sediment is lower than 10 times the quality criterion (EQS _{sed})	2 ≤ RQ < 10	EQS _{sed} exceeded	
Bad	The measured concentration is equal or higher than 10 times the quality criterion (EQS _{sed})			

Level 2: assessment refinement

4. Conclusions and perspectives

- PFOS: suitable indicator for monitoring PFAS contamination in sediment quality assessment in Swiss small streams
 - Most commonly detected PFAS
 - EQS_{sed} could be derived
 - Normalization for the fine fraction for comparison among campaigns targeting different matrices
 - If not possible, anthropogenic background concentration are proposed for sediment quality assessment (not safe concentration benchmarks!)

4. Conclusions and perspectives

- PFOS: suitable indicator for monitoring PFAS contamination in sediment quality assessment in Swiss small streams
 - Most commonly detected PFAS
 - EQS_{sed} could be derived
 - Normalization for the fine fraction for comparison among campaigns targeting different matrices
 - If not possible, anthropogenic background concentration are proposed for sediment quality assessment (not safe concentration benchmarks!)
- Need of further data for deriving sound threshold values
 - Sediment toxicity studies for direct toxicity assessment
 - Validation of food webs models to link sediment contamination and secondary poisoning in top predators
- Need of appropriate strategies for PFAS risk assessment as a whole

Study published in IEAM DOI: 10.1002/ieam.4412

Acknowledgements

The data presented were collected from projects financed by the Federal Office of the Environment and the Swiss Centre for Applied Ecotoxicology.

We acknowledge Yael Schindler-Wildhaber (OFEV), Silwan Daouk (VSA) and Inge Werner (Ecotox Centre), and Michel Wildi, Christina Thiemann, and all those who contributed to the field and lab work.

AND THANK YOU FOR YOUR ATTENTION!