Can we use theoretical approaches from natural sediment to describe the transport behaviour of microplastics?

Dr. ir. Kryss Waldschläger Assistant Professor for Fluid Mechanics



Microplastics are everywhere.

#### But how are they transported in the environment?





### Transport pathways and sinks



#### Microplastics = Natural sediments?







# **Comparison of Particle Properties**



WAGENINGEN UNIVERSITY & RESEARCH We need prove!





### Microplastic Particles

|                                |      |                                    |                    |   | • | •  | • | • |
|--------------------------------|------|------------------------------------|--------------------|---|---|----|---|---|
| Polymer                        |      | Shape                              | Density<br>[kg/m³] | ۲ | 6 |    | 6 |   |
| Polypropylene                  | PP   | Sphere, pellet,<br>fiber, fragment | 826-870            |   |   | J. |   |   |
| Polyethylene                   | PE   | Sphere, pellet,<br>fiber, fragment | 894-936            |   |   |    |   |   |
| Polystyrene                    | PS   | Sphere, pellet,<br>fragment        | 1008-1021          | ļ |   |    |   |   |
| Expanded<br>Polystyrene        | EPS  | Sphere (foamed)                    | 22                 |   |   |    |   |   |
| Polyvinyl-<br>chloride         | PVC  | Pellet, fragment                   | 1307               |   |   |    |   |   |
| Polyethylene-<br>terephthalate | PET  | Pellet, fiber,<br>fragment         | 1368               |   |   |    |   |   |
| Polyamide                      | CoPA | Fiber                              | 1101-1107          |   |   |    |   |   |





# Settling & Rising: Experimental Setup

- Settling column with an opening at the top and at the bottom
- 15 cm each for accelerating the particles
- 2 x 35 cm measuring section
- Measurements with a camera
- 52 different MP particles
- 468 runs





## Settling & Rising: Results



DOI: 10.1021/acs.est.8b06794

# Settling & Rising: Comparison to Sedimentological Theory







# Settling & Rising: New Theoretical Approaches



### **Resuspension: Experimental Setup**



#### Resuspension: Results





DOI: <u>10.1021/acs.est.9b05394</u>

#### Resuspension: Results





DOI: 10.1021/acs.est.9b05394

# Resuspension: Comparison to Sedimentological Theory





DOI: 10.1021/acs.est.9b05394

# Resuspension: New Theoretical Approaches

Based on the hiding-exposure effect:



## Infiltration: Experimental Setup



- 21 different microplastic particles
- Irrigation with 4600 ml/min for 1 hour



### Infiltration: Results





DOI: <u>10.1021/acs.est.0c01722</u>

# Infiltration: Comparison to Sedimentological Theory

**Fine sediment infiltration:** Ratio of particle diameter of infiltrating sediment (d<sub>u</sub>) to the diameter of the sediment bed (D<sub>u</sub>) influences infiltration depth and type





 $0,11 < d_u/D_u < 0,32$ : Finite Depth Infiltration











## Infiltration: Application of the Results

Determination of the possible infiltration depth as a function of the microplastic size and the grain size of the existing soil.

Depth profiles of microplastic concentrations in soils rather useful for  $d_u/D_u < 0,11$ .

|        |                |                                   | MP size                            |      |                           |                            |                              |           |  |
|--------|----------------|-----------------------------------|------------------------------------|------|---------------------------|----------------------------|------------------------------|-----------|--|
|        | Classification | Upper sediment<br>grain size [mm] | 100 nm                             | 1 µm | 10 µm                     | 100 µm                     | 1 mm                         | 5 mm      |  |
| diment | Coarse silt    | 0.063                             |                                    |      |                           |                            |                              |           |  |
|        | Fine Sand      | 0.2                               |                                    |      | $\mathbf{X}$              |                            |                              |           |  |
|        | Medium sand    | 0.63                              |                                    |      |                           |                            |                              |           |  |
|        | Coarse sand    | 2                                 |                                    |      |                           |                            |                              |           |  |
| Se     | Fine gravel    | 6.3                               |                                    |      |                           |                            |                              |           |  |
|        | Medium gravel  | 20                                |                                    |      |                           |                            |                              |           |  |
|        |                | Average                           | $d_{_{MP}}/d_{_{sediment}} < 0.11$ |      | 0.11 < d <sub>MP</sub> /d | <sub>sediment</sub> < 0.32 | $d_{MP}/d_{sediment} > 0.32$ |           |  |
|        |                | infiltration<br>depths :          | 13 cm                              |      | 5 cm                      |                            | 1                            | 1 cm      |  |
|        |                |                                   |                                    |      |                           |                            |                              |           |  |
|        | -/ (() - ()    |                                   |                                    |      |                           | DOI: 10.1                  | 021/acs.                     | est.0c017 |  |

## Infiltration: Application of the Results

Determination of the possible infiltration depth as a function of the microplastic size and the grain size of the existing soil.

Depth profiles of microplastic concentrations in soils rather useful for  $d_u/D_u < 0,11$ .

|                            |                |                                   | MP size                            |      |                           |                |                                       |                              |  |
|----------------------------|----------------|-----------------------------------|------------------------------------|------|---------------------------|----------------|---------------------------------------|------------------------------|--|
|                            | Classification | Upper sediment<br>grain size [mm] | 100 nm                             | 1 µm | 10 µm                     | 100 µm         | 1 mm                                  | 5 mm                         |  |
| diment                     | Coarse silt    | 0.063                             |                                    |      |                           |                |                                       |                              |  |
|                            | Fine Sand      | 0.2                               |                                    |      |                           |                |                                       |                              |  |
|                            | Medium sand    | 0.63                              |                                    |      |                           |                |                                       |                              |  |
|                            | Coarse sand    | 2                                 |                                    |      |                           |                |                                       |                              |  |
| Se                         | Fine gravel    | 6.3                               |                                    |      |                           |                |                                       |                              |  |
|                            | Medium gravel  | 20                                |                                    |      |                           |                |                                       |                              |  |
|                            |                | Average                           | $d_{_{MP}}/d_{_{sediment}} < 0.11$ |      | 0.11 < d <sub>MP</sub> /d | sediment < 0.3 | 2 d <sub>MP</sub> /d <sub>sedin</sub> | $d_{MP}/d_{sediment} > 0.32$ |  |
|                            |                | infiltration<br>depths :          | 13 cm                              |      | 5 (                       | cm             | 1                                     | 1 cm                         |  |
|                            |                |                                   |                                    |      |                           |                |                                       |                              |  |
| DOI: 10.1021/acs.est.0c017 |                |                                   |                                    |      |                           |                |                                       |                              |  |

# We need to be careful when using sedimentological basics for describing microplastic transport!





If you are interested in a deeper discussion of my research or a collaboration, feel free to contact me!

Thank you for

your attention!

#### Dr. ir. Kryss Waldschläger

Assistant Professor for Fluid Mechanics Hydrology and Quantitative Water Management Group Wageningen University & Research



kryss.waldschlager@wur.nl

@KryssWaldschlg1

