Reactive mat on riverbed catches groundwater contaminants and replaces sediment

Europees Fonds voor Regionale Ontwikkeling

WP3 Partners

Presenter: Tobias Praamstra tobias.praamstra@tauw.com

Problem outline: point of departure

Situation

- Locations with long term discharge of contaminated groundwater into surface waters
- Sediment layer removed, discharge increases and biodegradation decreases

Examples of contaminated groundwater

- Residual contamination from industrial sites / brownfields
- Chemical landfills
- Agricultural land
- Mines

Consequences

- Decline of surface water quality \rightarrow ecological and human risks (exceeding standards)
- Environmental liabilities → marketability & redevelopment issue

Conventional approach & alternative

Conventional approach to avoid influx

Excavation, pump & treat, thermal extraction, etc. are expensive and have large environmental footprint:

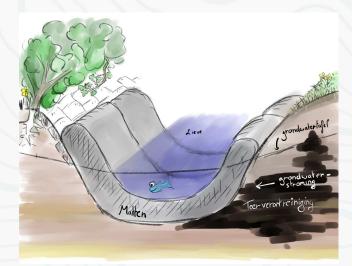
- Large volumes of contaminated soil and groundwater
- Limited accessibility
- Slow desorption / low concentration levels / diffusive character

Alternative approach

Reactive Mat. Low-cost solution with small environmental footprint:

- Passive system
- Long lasting

Principle of reactive mat (or Natural Catch


Contaminated sediment initially removed

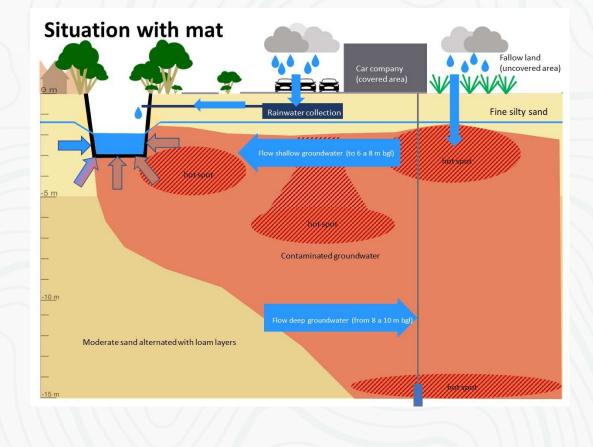
Construction: water permeable mat of geotextile packaging with adsorption material in compartments (like a down-filled winter jacket)

Implementation: hoisted into the surface water, sunk to the waterbed and anchored to the banks

How it works (three nature based pillars):

- Natural inflow of contaminated groundwater (improved by dredging)
- Adsorption of contaminants to natural adsorbent (lowest grade!)
- Biological degradation at aerobic/anaerobic interface on mat

Test location: canal Lieve in Ghent (B)


Historical site: former tar distillery and production of carbon black & asphalt Soil contamination: PAH, PH (C6-C10), BTEXN

Situation before and after dredging (2019)

Conceptual site model – desired situation with ma

Exploratory field investigation

- 1. Probing in the river bank: optical sensor & MIP-GCMS (EnISSA) \rightarrow hot spots incl. free product
- 2. Groundwater sampling in the river bank \rightarrow hot spots (> 10.000 µg/l)
- 3. Surface water sampling \rightarrow sudden increase (factor 300 > standard) and dilution downstream
- 4. Flux measurements through sediment bed (iFLUX)

Resarat De Lieve: SBPFM massafluxen (Meetcampagne 2) Image: Comparison of the comparison of

Spatial distribution mass flux contaminants

innax per component eden segment (ing/in per day)				
		Segment 1	Segment 2	Segment 3
	Benzene	0,00	11,8	0,00
	Xylenes (sum)	0,17	20,2	0,04
	Naphtalene	2,36	28,4	0,35
	Fenanthrene	7,93	17,8	5,17
	Pyrene	2,21	4,59	4,83
	Acenaphtene	4,98	7,24	2,24
	C6-C10	0,00	3,02	0,00

Influx per component each segment (mg/m² per day)

Adsorption capacity green adsorbents

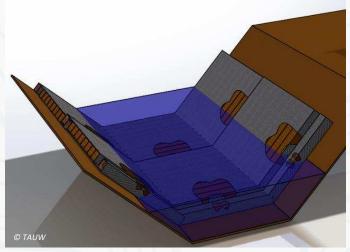
Adsorption capacity batch tests by TAUW test lab (7 green adsorbents)

Precondition / constraint: thickness of mat 30 cm!

Expected reduction and lifespan:

- PAH ± 90% during 12-16 years
- Benzene ± 75% during 16 years
- C6-C10 ± 97% during >50 years

Designing


Design reactive mat by Envisan, TenCate Geosynthetics, TAUW and University of Twente


Safe	Fillable	
Producible	Affordable	
Reliable	Strong	
Replaceable	Anchorable	

Homogenous Placeable Weight / buoyancy

Implementation September 2020

1. Filling

Execution by partner Envisan

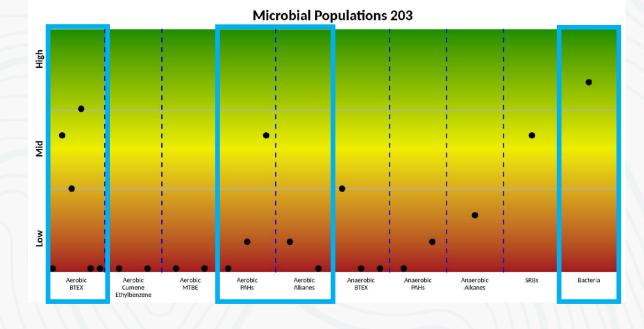
2. Compartments: adsorbents and ballast

3. Hoisting mat element into canal

Implementation September 2020

4. Anchoring to the bank

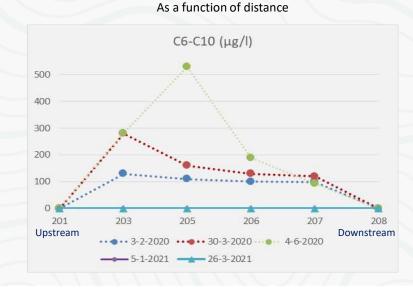
Execution by partner Envisan

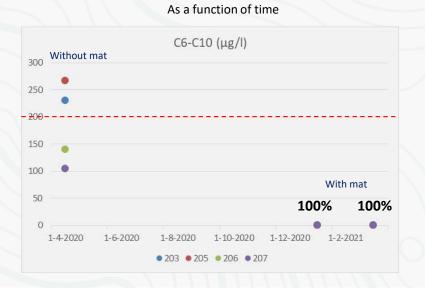

6. Division into two adsorbent zones

5. Full scale construction

Initial results micro-organisms on mat

Presence of specific micro-organisms (qPCR)

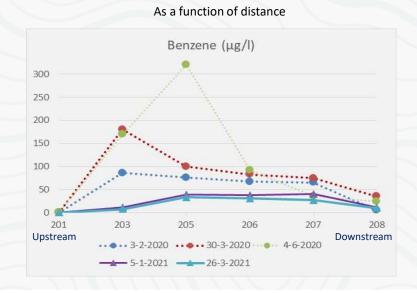

• Aerobic biodegraders for BTEX, PAH and alkanes (10 - 10.000 cells /ml)

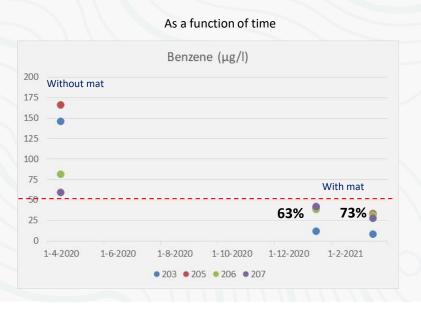


Surface water quality with and without mat

C6-C10

- C6-C10 decreased to below water quality standard
- Efficiency 100% (expected 97%)

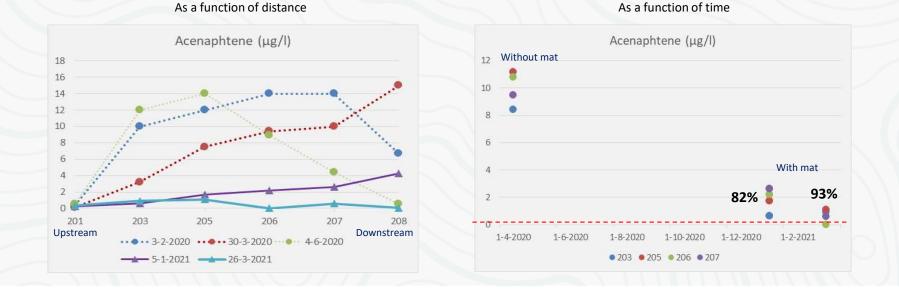




Surface water quality with and without mat

BTEX

- BTEX decreased to below water quality standard
- Efficiency benzene 63-73% (expected 75%), xylenes 80-86%



First monitoring results

PAH

- PAH (5 of 16) still exceed water quality standard (+/- 0,1 μg/l), but
- Efficiency phenanthrene 92-99%, pyrene 94-95%, acenaphthene 82-93% (expected 85-95%)

Conclusion and what's next?

Results

- Dense and saturated sediment layer is replaced by Nature Based Solution to improve quality of waterbody
- Interim conclusion: the reactive mat (Natural Catch) functions as it is supposed to!

Next

- Monitoring until September 2022, incl. water quality, flux, microbes and adsorption in mat (at 3 depths)
- Showing low carbon footprint (by CO2 tool TAUW) and low costs (by financial model REBEL)
- Writing Code of Good Practice (OVAM, open source)

Resanat partnership Interreg

The Resanat project is subsidized by Interreg Flanders-Netherlands (European fund for regional development) and co-financed by the Dutch Ministry of Economic Affairs.

Contact: Tobias Praamstra, TAUW tobias.praamstra@tauw.com

1inisterie van Economische Zaken

