

SIMONA Sediment-quality Information, Monitoring and Assessment System

to support transnational cooperation for joint Danube Basin water management

Gyozo Jordan and The SIMONA Project Team* Scientific Coordinator

*http://www.interreg-danube.eu/approved-projects/simona

Sediment-quality Information, Monitoring and Assessment System

to support transnational cooperation for joint Danube Basin water management

THE PROJECT

Background

Environment and culture responsible Danube region (Priority Axis 2.)

Strengthen transnational water management (Specific Objective 2.1)

Project web site: <u>https://www.interreg-danube.eu/approved-projects/simona</u> Project video: <u>https://www.interreg-danube.eu/approved-projects/simona/section/simona-promotional-video</u>

Project co-funded by the European Union http://www.interreg-danube.eu/approved-projects/simona

Danube River Basin – PROBLEMS

Origin

Governments - ASPs

ICPDR

DEMAND: hazardous substances

- where are the contaminated areas (water, sediment, soil)?
- harmonised data and methods
- Water Framework Directive

Geochemistry Expert Group

Geological Surveys - PPs

SUPPLY: geochemical maps

- FOREGS EU Geochemical Atlas (stream water, stream sediment, floodplain sediment, soil)
- **GEMAS** EU Chemistry of Soils (REACH Regulation)

Objective

DEMAND Effective use of sediment quality **ASSESSMENT** (status, trend) for the next RBMPs due in 2021

STATUS DTP Countries: lack of institutional supply

SUPPLY Ready-to-deploy Sediment-quality Information, Monitoring and Assessment System (SIMONA SYSTEM)

aid Danube Transnational Programme (DTP) Countries' daily operational work

Water Framework Directive

 ✓ INVENTORY – status of Sediment Quality monitoring in Danube River Basin (DRB)

✓ METHODS – SIMONA System

- Sampling Protocol / Methods
- Laboratory Protocol / Methods
- Evaluation Protocol / Methods
- IT Tool

✓ TESTING & VERIFICATION

- 3 Test Areas (TAs) (30 sampling sites)
- National Sites (2 per country -26 sampling sites): DRB BASELINE MONITORING NETWORK

✓ TRAINING & CAPACITY BUILDING

- Sampling Drava TA
- Laboratory South Danube TA
- Evaluation & IT Tool Upper Tisa TA
- PARTNER COUNTRY PREMISSES

SIMONA System – DEVELOP – Sampling Method / Protocol – Laboratory Method / Protocol – Evaluation Method / Protocol – IT Tool 3 CASE Studies – TEST

26 Nat. Baseline Sites – VERIFY

Scope

Danube River Basin

The most international river basin in the world 10% of Europe \checkmark 800.000 km 2 \checkmark **19 countries** \checkmark **85 million inhabitants** \checkmark 6500 m³/s \checkmark

overbank / floodplain

Surveillance / Operational monitoring (regular monitoring for long-term changes)

- Single monitoring site (sampling station)
- Single water body
- Hazardous substances listed in the EU WFD
- Single substances (mixtures are not considered)

Scope

Sediment quality: HS toxicity to biota (benthic & pelagic) as receptors

Scope

HS partitioning

between

- solid sediment & pore water

- suspended sediment & surface water

Hyporheic flow

Water table

HS partitioning

within sediment - total organic content (TOC) - fine grain material (<63μm)

Direction of stream flow

Water table

Direction of ground-water flow

hyporheic zone

Scope

SIMONA

DEVELOPMENT

Criteria

CRITERIA FOR METHODS

- SCIENTIFIC (Repeatibility/Reproducibility, Representativity)
- ✓ LEGISLATIVE (WFD: Surveillance/Regular Monitoring; HSs; EQS)
- EFFICIENT (simple, fast, cheap, ready-to-deploy, adaptive to site-specific conditions)

aid DTP Countries' daily operational work

Water Framework Directive

The Cookbook Approach

step-by-step manual: scientifically-based, demonstrated

The COOKBOOK Approach

RECIPE

Plaza to usually associated with senergicles, however piezes decremented with owner organities in make an experient, enjoyable desperts. Whether rooking for your family or bothing a pitza carty, sinve up a dessert pitza as a menurally india.

Pears, Perses, and Gorganzola

The place is another Company on Droup Johania, Ideal (the new records). unt the fit whet have the paint of the effect of the paint for the different vertex bands the place, or, exhibiting conduct present and one time the new ty. Doin erres eved an

STRATE.	
(issued)	This asset prevention of your day of
4 44	sarges or charles peer thiny a lord
1 ex.	porten holi-on
2.	Superstation
2.8	initial sector fraction

PRATE LANS

ene-negatiour polarite size a long the hour with your place atoms of speet and the weith in disaring which we are the total dealed a sector property provides as with high switch with a paraka wa paranga explaint weare and pecar halves. and back cannot be the brought of

che pitta froni the an

You always make the SAME pizza WHEREVER you are

SAMPLING Theory

CRITERIA FOR METHODS

SAMPLING Theory

CRITERIA FOR METHODS

Basics

SAMPLING Theory

CRITERIA FOR METHODS

Repeatibility regular observation

Reproducibility harmonisation

The COOKBOOK Approach

COOKBOOK *PROTOCOL/MANUAL*

Cash Tarak Play June, Peral & Earth Others

Onic of every Prate i Jamie, Petal & Eucon Officer

The COOKBOOK Approach

Figure 6.5. Profiling theodolub and more

Harmonisation

trans-boundary cooperation for joint Danube Basin water management

Harmonisation

Sampling

1. THE SAMPLING SYSTEM APPROACH

Harmonisation - Sampling

1. THE SAMPLING SYSTEM APPROACH

Sampling System Component	WHAT TO DOCUMENT IN THE FIELD	Example
EQUIPMENT	WHICH TOOLS and devices are used for sample collection?	the aluminium scoop and the Ro- manian grabber
PEOPLE	WHO are taking the sample?	samplers' names
PROCESS	WHICH METHOD is used for sample collection?	the scoop-grab system
MATERIALS	WHAT is the target population and in which sampling media?	HSs in the upper 0-5cm river bot- tom sediment
ENVIRONMENT	WHAT KIND OF CONDITIONS prevail during sample collection?	air and river wa- ter T, land use, precipitation, etc.
MANAGEMENT	WHICH QC (quality control) proce- dures are used during sample collec- tion?	field duplicate of composite sam- ples

DEVELOP YOUR SEDIMENT SAMPLING SYSTEM

2. FIELD TESTING OF SAMPLING SYSTEMS

14-15 July 2020, Harkány, Hungary

international expert meeting and field exercise

Evaluation Criteria

- 1. Sampling should be scientifically-based: reproducible and representative
- 2. Sampling should be in full compliance with EU legislation (Water Framework Directive)
- 3. Sampling should be practice-oriented: 'Ready-to-deploy'
- Sampling should be flexible and adaptive to the site-specific conditions such as lowland versus mountainous conditions, etc.

Harmonisation - Sampling

3. SCIENTIFIC COMPARISON OF SAMPLING SYSTEMS

right to basing as we'l the year of item (is)

versus

DRAVA TEST AREA: SAMPLING SYSTEM HOMOGENEITY (Reproducibility)

- <63μm, LOI, Majors (Ca, Mg, Na, K, Fe, Mn, Al)

a seal for a floodplace reflected extry the rate wangles

Nann-Whitney (Wilcoxon) W-test to compare medians Null hypothesis: median1 = median2 Alt hypothesis: median1 NE median2

Average rank of sample 1: 9.88889 Average rank of sample 2: 9.11111

W = 37.0 P-value = 0.791077 Do not reject the null hypothesis for alpha = 0.05.

3.2 Top soil sampler – Austrian soil cake sampler

4. STANDARD SAMPLING KIT

Harmonisation

Laboratory

- ICPDR 2003. List of Priority Substances for the Danube River Basin. International Commission for the Protection of the Danube River, 4p.
- ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. International Organization for Standardization and International Electrotechnical Commission.
- ISO 5666:1999 Water quality Determination of mercury. International Organization for Standardization.
- ISO 5667-12:2017 Water quality Sampling Part 12: Guidance on sampling of bottom sediments from rivers, lakes and estuarine areas. International Organization for Standardization.

Harmonisation - Laboratory

ACCREDITED LABS INTERLABORATORY TRIALS REFERENCE LABS

- ISO 5667-13:2011 Water quality Sampling Part 13: Guidence on compline of sludges. International Organization for Standardiza (PFOS), U.S. Env.
- ISO 5667-15:2009 Water quality Sampling Part 15: Gui vation and handling of cludge and cadiment camples firm ISO 103 poly capt ISO 103 genated hydrocarbons – Purge-and-trap meth European Standardisation Organisation and In Standardization.
 - EN ISO 23161:2018 Soil quality Determination pounds. Gas-chromatographic method. Europ sation and International Organization for Star
 - EN 16171:2016 Sludge, treated bio-waste and soi using inductively coupled plasma mass spect Standardisation Organisation.

- EPA 2016. Health Effects Support Document for Perfluorooctane Sulfonate (PFOS). U.S. Environmental Protection Agency, Office of Water, Washington, DC, USA, 245p.
- EPA 2017 Technical Fact Sheet Polybrominated Diphenyl Ethers (PBDEs). U.S. Environmental Protection Agency, Office of Water, Washington, DC, USA, 5p.
- EPA Method 1613:1994 Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS. U.S. Environmental Protection Agency, Office of Water, Washington, DC, USA.
- EPA Method 1614:2007 Brominated Diphenyl Ethers in water soil, sediment and tissue by HRGC/HRMS. U.S. Environmental Protection Agency, Office of Water, Washington, DC, USA.
- EPA Method 1625:1989 Semivolatile Organic Compounds by Isotope Dilution GCMS. U.S. Environmental Protection Agency, Office of Water, Washington, DC, USA.
- EN 16181:2018 Soil, treated biowaste and sludge Determination of polycyclic aromatic hydrocarbons (PAH) by gas chromatography (GC) and high performance liquid chromatography (HPLC). European Standardisation Organisation.

Harmonisation

Data Management

HARMONISATION - Data Management

1. STANDARD FIELD OBSERVATION SHEET - EU WISE COMPATIBLE

SITE CHARACTERISATION

MONITORING SITE IDENTIFICATION		
Monitoring site identifier WISE SoE: (incr.toring:Steidentifier)	Water body identifier (waterbod//dentifier)	- (
Monitoring site identifier scheme: (inoritaringStociaentifierScheme)	Water body category code: /parameter/WaterBodyCotegory)	
Monitoring site name: (incrutivingSite/seme)	Surface water name:	
Monitoring Site Coordinates (WG584):	Latitude (decimal degrees):	
(inonitaring Sile Coordinates)	Longitude (slosimal degress):	

FIELD OBSERVATION SHEET FOR MONITORING SITE CHARACTERISATION

FIELD OBSERVATION SHEET FOR SEDIMENT SAMPLING

SAMPLING IDENTIFICATION					
Sampling time (date) YYYY-MM-DD: (phenomenonTimeSamplingDate)			Sampling time H (phenomenonTim	H-MM: eSamplingTime)	
Sampler's name:		$\overline{}$	Sampler's signat	ture:	
Accredited sampling:	Y 🗌	N 🗌		unique ID of	sample:
Analysed matrix: (procedureAnalysedMatrix)		1	Site	ID + Sampling	g Date/Time
Bottom sediment (BS) (S)					
WEATHER (AIR) CONDITIONS			_		~
Determinand code (observedPropertyDeterminandCode)	Observ (resultObs	ed value ervedValue)	Unit of measure (resultUom)	Estir	mation
T: WISE parameter	7		Centigrade	cold average	hot 🗌
wist parameter	-				
P:			atm		
P: names		waluez	atm	low medium	high

FIELD OBSERVATION SHEET FOR SEDIMENT SAMPLING

Sample identifier Duplicate sample Y N Duplicate sample identifier: Sampling system (equipment): Vacuum corer Romanian grab Scoop Dredge Selection of the applied Other selection of the applied Sampling system Secify: Secop Composite sample Number of sub-samples: SAMPLE DESCRIPTION Determinand code (observedPropertyDeterminandCode) (resultObservedValue) Sample volume: Estimate Texture (onticle size description):			each sar ts own o	npling observa	media ation s	has heet)		
Duplicate sample Y N Duplicate sample identifier: Sampling system (equipment): Vacuum corer Romanian grab Scoop Dredge Selection of the applied Stampling system Selection of the applied Sampling system Specify: Sample of sub-samples: Sample volume: Sample volume: Sample volume: Sample volume: Sample volume: Sample volume: Sample volume: Sample volume: Sample volume: S	Sample identifier (sampleIdentifier)								
Sampling system (equipment): /acuum corer Romanian grab Scoop Dredge Selection of the applied Dredge Selection of the applied Sampling system Sample Number of sub-samples: Sample volume: Sample volume: Determinand code Observed value resultObservedValue) fixed paramter values Sample volume: Determinand code Observed value resultObservedValue) fixed paramter values Sample volume: Determinand code Observed value resultObservedValue) fixed paramter values	Duplicate sample			Y 🗌	N 🗌	Duplicate sa	imple ider	ntifier:	
Vacuum corer	Sampling system (equi	pment):		(1.
Romanian grab Scoop Dredge Selection of the applied Sampling system Somposite sample Number of sub-samples: SAMPLE DESCRIPTION Determinand code observedPropertyDeterminandCode) (resultObservedValue) fixed paramter values Sample volume: poorty sorted = medium sorted = well-sorted =	/acuum corer								
Scoop	Romanian grab								
Oredge selection of the applied sampling system Specify: Other sampling system Specify: Composite sample Number of sub-samples: Composite sample Number of sub-samples: SAMPLE DESCRIPTION Observed PropertyDeterminandCode; (resultObservedValue) fixed paramter values Sample volume: poorly sorted = medium sorted = well-sorted =	Scoop			/					
Sampling system Somposite sample Number of sub-samples: Sample DESCRIPTION Observed value Observed Value) fixed paramter values Sample volume: Sample volume: Exture (particle size description): poorly sorted = medium sorted = well-sorted =	Dredge	selection	of the a	pplied					
Composite sample Number of sub-samples: SAMPLE DESCRIPTION Sample Description Determinand code (observedPropertyDeterminandCode) Observed value (resultObservedValue) fixed paramter values Sample volume: Estimate Estimate	Other	samp	ling syst	tem			Specify:		
SAMPLE DESCRIPTION Determinand code (observed PropertyDeterminandCode) Observed Value) Sample volume: Estimate Determinand code (resultObservedValue) Fexture (particle size description): poorly sorted = medium sorted = well-sorted =	Composite sample				_	Number of s	ub-sampl	es:	
Observed value (observedPropertyDeterminandCode) Observed value (resultObservedValue) fixed paramter values Sample volume: Estimate		N							
Sample volume: Estimate	Determinand code observedPropertyDeter	minandCode)	Observed (resultObs	i value servedVa	lue)	fixed pa	ramter v	alues	
Texture (particle size description): poorly sorted _ medium sorted _ well-sorted _	Sample volume:							Es	timate 🗌
	Texture (particle size de	escription):	poorly sor	ted □ me	dium so	rted well-so	orted 🗆 🖯		

2. IT TOOL - EU WISE COMPATIBLE WEB APP

1. DATA INPUT (field, lab)

2. DATA MANAGEMENT & VISUALISATION

Harmonisation

Training

HARMONISATION - Training

Train-the-Trainer

RESULTS

Sampling

Sampling

Monitoring Site Selection

risk-based ranking and selection of monitoring sites

MONITORING SITE SELECTION – DEFINITION

Monitoring site is the area where sampling system (the samplers and the tools) gets in **interaction with the site environment** including the sampling media (fluvial sediment) so sampling system may affect the sampling media and eventually the sample to be collected.

MONITORING SITE SELECTION – RISK BASED RANKING

CRITERIA	PARAMETER	VALUE (Y/N/UNKNOWN)
	Is there known impact of contaminated sediment? (toxic effect on biota)	
	Is there known risk posed by sediment? (HS>QS)	
	Is there known risk posed by water? (HS>QS)	
	Is the water body status bad?	
	Is there significant HS point pollution source (SEVESO II, mines, smelters,	
Class 1 PISK	pharmaceutical and other industry) posing direct risk at the water body or	
	located in the catchment?	
	Is there significant HS non-point pollution source (intensive agricultural activity:	
	pesticides, fertilizers) posing direct risk at the water body or located in the	
	catchment?	
	Is there polluted area posing direct risk at the water body or located in the	
	catchment?	
	Is the sites relevant for assessing pollutant loads which are transferred across	
	boundaries of Contracting Parties and are transported into the marine	
Class 2 Stratogy	environment?	
Class 2 Strategy	Is there an TNMN monitoring point?	
	Is the site placed just upstream/downstream of an international border?	
	Is the site located in a transbordary catchment?	
	Is the site representative for an extended section of the river (water body or	
	cathcment) (no local pollution sources, e.g. tourism, boating, waste site)?	
Class 3 Science	Does the site enable the repeated collection of all the 3 types of fluvial sediments	
	for risk assessment?	
	Is the sediment in site homogeneous based on preliminary (pilot) survey?	
	Is the site sediment quality conditions (geochemical background, link to $ {f V} $	
	groundwater: hyporheic zone, hydromorphology and hydrography such as flood	
	frequency) understood sufficiently?	

MONITORING SITE SELECTION – RISK BASED RANKING

CRITERIA	PARAMETER	VALUE (Y/N/UNKNOWN)
	Is there regular SEDIMENT quality monitoring data?	
	Is there archive SEDIMENT quality monitoring data?	
	Is there archive SEDIMENTquality data (e.g. FOREGS sampling point)?	
	Is there regular/archive WATER discharge monitoring data?	
	Is there regular WATER quality monitoring data?	
	Is there archive WATER quality monitoring data?	
Class 4 Information	Is there archive WATER quality data (e.g. FOREGS sampling point)?	
	Is there sufficient general background data?	
	Meteorology and Climate (e.g. temperature, precipitation, solar radiation);	
	Hydromorphology and hydrography (e.g. discharge, water depth, current,	
	velocity); Geology and Soil (e.g. bedrock and soil type,	
	characteristics/composition/stratification of sediments, erosion); Land use/Land	
	cover; Biology (e.g. with reference to macrophyte accumulation)	
	Is there easy transboundary access to the site?	
	Is there easy access to the site (e.g. road, distance, fence)?	
Class 5 Technical	Is there easy access to the sampling point(s) in the site (e.g. slope condition vegetation cover)?	
	Can sampler enter the river to collect bottom sediment sample (water depth <ca. 1.5m) once every month at least (e.g. floods, ice cover) ('small river')?</ca. 	

- ISO 5667-12:2017
- ISO 5667-17:2008
- WFD TGD No. 25
- ICPDR TNMN Monitoring Sites Criteria
- SIMONA WG1 Sampling

MONITORING SITE SELECTION – REPRESENTATIVITY

- **1. AT NATIONAL WATER QUALITY MONITORING POINT** (preferably upstream)
- 2. MIN. 250M LONG
- 3. BOTTOM -, SUSPENDED -, OVERBANK SEDIMENT SAMPLING POSSIBLE (availability, accessibility)
- 4. AVOID TRIBUTARY CONFLUENCE
- 5. AVOID KNOWN CONTAMINATED SITE
- 6. AVOID LOCAL CONTAMINATION SOURCE
 - Discharge channel or pipe; Waste site; Industry or power plant; Railway lines & major roads; Electric line & pylon; Bridge; Other sources
- 7. UNIFORM HYDROMORPHOLOGY

MONITORING SITE SELECTION – HOMOGENEITY

DRAVA TEST AREA:

SITE HOMOGENEITY

- <63μm, LOI, Majors (Ca, Mg, Na, K, Fe, Mn, Al)

CASE STUDY

Results - Sampling

MONITORING SITE SELECTION – HOMOGENEITY

CASE STUDY

Results - Sampling

MONITORING SITE SELECTION – HOMOGENEITY

Sampling

Sampling Design

- 1. AT NATIONAL WATER QUALITY MONITORING POINT (preferably upstream)
- 2. MIN. 250M LONG
- 3. BOTTOM SEDIMENT, SUSPENDED SEDIMENT, OVERBANK SEDIMENT SAMPLING POSSIBLE (availability, accessibility)
- 4. AVOID TRIBUTARY CONFLUENCE
- 5. AVOID KNOWN CONTAMINATED SITE
- 6. AVOID LOCAL CONTAMINATION SOURCE
 - Discharge channel or pipe
 - Waste site
 - Industry or power plant (min. distance 2500m)
 - Railway lines & major roads (min. distance 200m)
 - Electric line & pylon (min. distance 100m)
 - Bridge (min. distance 50m upstream)
 - Other sources
- 7. UNIFORM HYDROMORPHOLOGY

BOTTOM SEDIMENT

HORIZONTAL DESIGN

1. 5-10 SAMPLING POINTS

- Composite sample: 5-10 sub-samples (always at least 3)
- 2. SAMPLING POINTS EQUIDISTANT
- **3. SAMPLING POINTS IN MAIN STREAM LINE** (active river flow)
- 4. AVOID STAGNANT (NON-ACTIVE) WATER
- **5. AVOID EDGE EFFECTS** (local river bank erosion into river)

VERTICAL DESIGN

- 1. TOP 0-5 CM
- 2. AVOID PLANTS & PLANT REMNANTS
- 3. SAMPLED SEDIMENT IN CONTACT WITH (UNDER) RIVER WATER

SUSPENDED SEDIMENT

HORIZONTAL DESIGN

- 1. ONE SAMPLING POINT
- Composite sample: suspended sediment sample is natural composite by flowing river water mixing
- 2. SAMPLING POINT LOCACTION AT DOWNSTREAM END OF MONITORING SITE
- **3. SAMPLING POINTS IN MAIN STREAM LINE** (active river flow)
- 4. AVOID STAGNANT (NON-ACTIVE) WATER

VERTICAL DESIGN

1. AT TOP 1/3 OF WATER DEPTH

OVERBANK SEDIMENT

HORIZONTAL DESIGN

- 1. 5 SAMPLING POINTS
- Composite sample: 5 sub-samples (always at least 3)
- 2. SAMPLING POINTS EQUIDISTANT
- **3. SAMPLING POINTS ON ACTIVE OVERBANK** (overbank flooded min. once per year)
- **4. AVOID EDGE EFFECTS** (local side wall erosion onto overbank)

VERTICAL DESIGN

- 1. TOP 0-5 CM
- 2. BOTTOM 40-50 CM
- **3. AVOID SURFACE PLANTS**

VERTICAL DESIGN

1. TOP 0-5 CM

Sampling

Sampling Method

Danube Transnational Programme SIMONA

SIMONA

FIELD MANUAL

Sediment quality sampling methods for hazardous substances in surface waters. Sampling instructions for the collection of surface water sediment samples for the regular long-term surveillance monitoring of sediment quality

Gyoup Jordan, Pranko Humer, Zsofia Kowaca, Zoltan Wlagosi, and the SIMONA Project Team

SAMPLING MANUAL

SIMQNA FIELD MANUAL

BS-01-01 BOTTOM SEDIMENT Ballet vacuum corer system

ide pith interval scorrplling Grae Jarden, Irako Harrer, Zafe Rover, Zolen Wages, and The SWEWS, Irakes Bear

SEE THE MOOD EXPERIENCEMENT AND MEDANIC CORE AND VIE

version 01

SAMPLING VIDEOS

SIMONA FIELD MANUAL

OS-01-01 OVERBANK SEDIMENT Cake sampler system (<u>handhold</u> ring soil sampler) Gree Islan, have have 2556 forcer, 24 for Wager, and The 24 044 June 19 or 1

SEE THE MORE OVERIGATION CARE SAVELED, AND

Several Activity

Table of Contents

1. SAMPLING PROCEDURE	5
PHASE 1. PREPARING FOR SAMPLING ON SITE	5
STEP 1.1 PREPARE SAMPLING GEAR	5
STEP 1.2 DOCUMENTATION	6

PHAS	E 2. G	ETTING	READY I	FOR SAM	ABLE CO	OLLECTI	0N	
ST	EP 2.1	TAKE SA	MPLIG TO	OOL TO S	AMPLIN	IG POINT.		9
ST	EP 2.2	DOCUM	ENTATION	NN				10

PHASE 3. SAMPLE	COLLECTION	1
		7

STEP 3.1 PICK UP SEDIMENT SAM

STEP 3.2 TAKE APART SAMPLING

STEP 3.3 PUSH WATER OUT OF TU

STEP 3.4 MOVE SAMPLE TO SAMP

PHASE 4. CLOSING SAMPLING .. STEP 4.1 SECURE SAMPLE. STEP 4.2 DOCUMENTATION. STEP 4.3 FIX TOOLS & EQUIPMENT

2. TOOLS AND EQUIPMENT

3. EXAMPLES

SAMPLING MANUAL

EQUIPMENT.

PHASE 3. SAMPLE COLLECTION

	STEP 3.1 PICK UP SEDIMENT SAMPL	E
nts	STEP 3.1 / 1 LOWER VACUUM CORE - SAMPLER 1: Signal 'SAMPLE COLLED TION STARTS!'	C- Sampling UPSTREAM to the sampler
IG ON SITE	 take position of sample collection (t upstream, maximise distance between sampler and vacuum corer) 	turyi maximise distance
IPLE COLLECTION	 sink the corer gently under water (v open) until hitting the bottom sedim- mildly (do not disturb uppermost lay 	alve ent rer)
	- push the corer into sediment firmly	THE CONTRACTOR
STEP 4.2 DOCUMENTATION		
STEP 4.2 / 1 CHECK FIELD SHEET DOCU- MENTATION		PUSHINTO SEDIMENT
TYPICAL MISTAKE: Field Sheet documentation rectod.	on is incomplete, not checked and cor-	
STEP 4.2 / 2 CHECK PHOTO DOCUMENTA- TION		CLOSE VALVE [A stream of cooperation] [A stream of cooperation] [A stream of cooperation]

TYPICAL MISTAKE: Field photo documentation is incomplete, not checked and corrected.

	EQUIPMENT				
CHECK		Sampling Unit	NOTE		
	Vacuum unit	Comments of the second se			
	Extension		 2 pieces steel 5 cm grade for water depth measurement 		
	Plexiglass tube		- 2 pieces - 50 cm		
	Rope		min 5 m		

DEVELOP YOUR SAMPLING SYSTEM: EQUIPMENT & TOOLS

ITEM	GOOD EXAMPLE	BAD EXAMPLE	NOTE
Spade			unpainted stain- less-steel spade vs painted spades
Hand spade			unpainted stainless steel hand spade vs - painted hand spade - coloured plastic spade

DEVELOP YOUR SAMPLING SYSTEM: EQUIPMENT & TOOLS

Painted spade: spade is Fe-steel, but paint contains HS contamination.

	Painted spade s	Charles and a			
Flagment	unpainted part	painted part	Steel spade		
Element	Concentration (%)	Concentration (%)	Concentration (%)		
Fe	98.36	77.71	99.1		
Mn	1.17	1.11	0.78		
Cr	0.316	0.36	0.106		
Tī		16.87			
V		2.34			
Co		1.48			

Cake sampler

Cake sampler	
Element	Concentration (%)
Fe	99.48
Mn	0.405
Cr	0.028
Ni	0.017
Cu	0.066

Scoop sampler

DEVELOP YOUR SAMPLING SYSTEM: EQUIPMENT & TOOLS

CASE STUDY

Results - Sampling

MONITORING SITE SELECTION – REMOTE SENSING & GIS

DRAVA TEST AREA:

- HU TNMN point + HR5 Donji Miholjac
- HU operative WATER monitoring points: presence of **hazardous materials**.

http://geoportal.vizugy.hu/vizgyujtogazd04 06/

CASE STUDY

SAMPLE COLLECTION

D.C.2.1 Drava Test Area Sampling Action

4-7 August 2020, Harkány, Szigetvár

Laboratory Analysis

CASE STUDY

Results - Laboratory

SIMONA

Interlaboratory Trials Among National Labs!

Evaluation

EVALUATION – COMPARISON TO (1) NATIONAL EQS OR (2) INTERNATIONAL EQS

- Normalisation
- -*<63µm*
- Toxicology-based preferred

EVALUATION – (3) CALCULATIONS BASED ON PARTITIONING: SITE SPECIFIC

Based on total concentrations and partitioning coefficients.

EVALUATION – NORMALISATION: SITE SPECIFIC

Passive Sediment Monitoring Station

PASSIVE SAMPLING SYSTEM

Monitoring site - BARCS

Our goal is to apply an easy-to-use, fast and efficient tool in terms of operation, and from a scientific point of view, the process should be representative and reproducible.

Results – Monitoring

PASSIVE SAMPLING SYSTEM

ONLINE SENSORS Sampler

SEDIMENT BOX Overbank Sampler

PASSIVE MEMBRANE Sampler

INFINIT-SINK DGT Pore Water Sampler

Outlook

Assessement of Contaminated Sediment Load

SEDIMENT QUALITY VS SEDIMENT QUANTITY

ADCP

BME University

Flow velocity field

Assessement of Contaminated Sediment Load

SEDIMENT QUALITY VS SEDIMENT QUANTITY

Suspended sediment

Suspended sediment concentration

BME University

Assessement of Contaminated Sediment Load

SEDIMENT QUALITY VS SEDIMENT QUANTITY

Bed load

BME University

Cooperation in the Danube Basin

Welcome to the Danube Basin!

Danube River Basin — A EUROPEAN CULTURAL AND HISTORICAL CENTRE

Danube River Basin — NATURE & PEOPLE

SIMONA welcomes you to the Danube Basin!

reject co-funded by the European Union

Gyozo Jordan *SIMONA Scientific Coordintor* Email: gyozojordan@gmail.com Mobile: +36 30 728 4060