13th International SedNet Conference, Lisbon 07.09.2023

Assessing *Remediation* of Polluted Marine and Soil Sediments with Advanced in Situ Monitoring Tools

<u>Heinrich Eisenmann</u>, Kevin Kuntze, Anko Fischer (Isodetect GmbH, Munich & Leipzig, Germany) Jofre H. Ferran (Water, Air and Soil Unit, Eurecat, Manresea, Spain) Chiara Melchiorre (Stazione zoologica di Napoli A. Dohrn, Napoli, Italy)

Why Monitoring Investments?

Time

Advanced Monitoring Tools for Polyaromatic and Aliphatic Pollutants

Application in marine sediments (SEDREMED): Bagnoli/Naples Electrochemical and biological remediation

Application in soil (LifeMySoil): Industrial contamination Mycopiles augmented with TPH degrading fungi

Industrial Area 1904 - 1990 8 km west from Naples

Nowadays: Abandoned Site

Abandoned Industrial Area of <u>Bagnoli</u> Need for Innovative Coastal Remediation

Matrix:

- Marine sediment polluted with PAH & heavy metals <u>Proposed technologies</u>:

 Electrochemical stimulation (Ekogrid) and bacterial amendment (Idrabel BioVase) <u>We are replacing (baseline)</u>:

- Excavation

Lab Tests ⇒ Mesocosms ⇒ Pilot test fields ⇒ Extended Area

Today 15:15 – 15:35, here: Raffaele Vaccaro, Nisidia Environment "Policy solutions for management of contaminated sediments in the EU"

Tools to Investigate Contaminant Degradation

For more details visit our two-day yearly workshop at Isodetect Leipzig

BACTRAPs Labeling, Loading & *in situ* Exposition

Isotope Labeled Pollutants

Sorbed to Carrier Material

Exposition

Geyer et al. (2005) Environ Sci Techn 39: 4983-4989 Stelzer et al. (2006) Org Geochem 37: 1394-1410 Bombach et al. (2010) Appl Microbiol Biotechnol 86:839–852

New BACTRAP Installation Systems for Coastal Sediments

Highly Robust in Harsh Environments

BACTRAP Exposition in Coastal Sediments

A Tough Job for Divers

BACTRAPs

¹³C-Label from Contaminants Incorporated into Biomass

Microbial Colonization of Carrier Surface

before incubation

¹³C-Naphthalene or ¹³C-Acenaphthene

Recovery after 2-4 months

¹³C Incorporation into Amino Acids (AA) and Phospholipid Fatty Acids (PLFA) expected after incubation

BACTRAPS from Natural Marine Sediments

13C-Naphthalene or 13C-Acenaphthene from High/Low Contaminated Areas

Tools to Investigate Contaminant Degradation

Laboratory Assays: ¹³C-Label from Contaminant Appears in Final Mineralization Product ¹³C-CO₂

- Quantification of complete degradation (metabolization)
- Check of most efficient in situ stimulation approach
- Highly sensitive and also quantitative (however: ex situ)

52 (!) Laboratory Assays

- Immediate PAH degradation by <u>oxygen amendment</u>
- Rapid <u>anaerobic degradation</u> of Naph, after 70 days also of Phen
- Assays with <u>BioVase+O₂ show a long lag-phase</u> and exhibit high O₂ consumption (inhibition?)

Tools to Investigate Contaminant Degradation

Some Specific Metabolites

that Indicate Aerobic or Anerobic Biodegradation of BTEX & PAH

- Preferably suitable for PAH and BTEX

Sediment Cores: Metabolite Analysis

Beside <u>benzoate</u>, no specific metabolite of the aerobic/anaerobic PAH degradation were detected \rightarrow <u>marginal natural attenuation</u> of PAH

sample ID	HA-1a	HA-2a	HA-3a	HA-4a	LA-4a	LB-1a
unit	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
Metabolites of aerobic BTEX biodegradation						
Catechol (1,2-dihydroxybenzene)	nd	nd	nd	nd	nd	nd
Methylcatechol (Dihydroxytoluene)	nd	nd	nd	nd	nd	nd
Ethylcatechol	nd	nd	nd	nd	nd	nd
Benzyl alcohol	nd	nd	nd	nd	nd	nd
Metabolites of aerobic Naphthalene biodegradation						
1-Naphthol (1-Hydroxynaphthalene)	nd	nd	nd	nd	nd	nd
2-Naphthol (2-Hydroxynaphthalene)	nd	nd	nd	nd	nd	nd
1,2 or 2,3-Dihydroxynaphthalene	nd	nd	nd	nd	nd	nd
Metabolites of anaerobic BTEX biodegradation						
Benzylsuccinic acid	nd	nd	nd	nd	nd	nd
(1-phenylethyl)benzylsuccinic acid	nd	nd	nd	nd	nd	nd
(2 and/or 3 and/or 4)-Methylbenzylsuccinic acid	nd	nd	nd	nd	nd	nd
Metabolites of anaerobic Naphthalene biodegradation						
(1 and/or 2)-Naphthoic acid	nd	nd	nd	nd	nd	nd
5,6,7,8-tetrahydro-2-Naphthoic Acid	nd	nd	nd	nd	nd	nd
Metabolites of anaerobic PAH biodegradation						
Naphthylmethylsuccinic acid	nd	nd	nd	nd	nd	nd
Phenanthrene-4-carboxylic acid or 9-Anthracencaboxylic aci	nd	nd	nd	nd	nd	nd
Flouren-9-carboxylic carboxylic acid	nd	nd	nd	nd	nd	nd
Acenaphthene- 5 and/or 3 -carboxylic acid	nd	nd	nd	nd	nd	nd
Metabolites of aerobic and anaerobic mono- and polycyd	clic aro	matic h	nydroca	arbon b	biodegr	adatic
Benzoic acid	+/-	10	32	24	25	62
(2 and/or 3 and/or 4)-Hydroxybenzoic acid	nd	nd	nd	nd	nd	nd
2,5-Dihydroxybenzoic acid (Gentisic acid)	nd	nd	nd	nd	nd	nd
3,4-Dihydroxybenzoic acid (Protocatechuic acid)	nd	nd	nd	nd	nd	nd
o/m/p-Toluic acid (methylbenzoic acid)	nd	nd	nd	nd	nd	nd
Phenol (probably co-contamination)	nd	nd	nd	nd	nd	nd
o/m/p-Cresol (probably co-contamination)	nd	nd	nd	nd	nd	nd
Metabolites of anaerobic alkane biodegradation						
Alkylsuccinic acids	nd	nd	nd		nd	nd

n.d. = not detected, below limit of detection

+ = detected, but quantification not possible due to peak overlay

+/- = detected, but below limit of quantification

Tools to Investigate Contaminant Degradation

GCMS Screening of Petroleum

Sediment Cores: GCMS Diagnostic Ratios

Sample	acenaphthene/fluorene Λ	dibenzofurane/fluorene \uparrow	phenanthrene/anthracene 🗸	pyrene/methylpyrene 🕹
LA-1α				
LB-1a				
LA-2α			1.7	
LB-2a			1.7	
LA-3α			2.1	
LB-3a			1.7	
LA-4α			1.3	
LB-4α			2.1	
HA-1α	0.92	0.44	1.1	12.01
ΗΒ-1α	0.77		2.0	
ΗΑ-2α	0.51	0.57	2.1	3.53
ΗΒ-2α		0.43	1.9	2.82
ΗΑ-3α	0.43	0.44	1.3	3.58
ΗΒ-3α			1.3	0.98
ΗΑ-4α			1.1	4.61
ΗΒ-4α			1.4	

Some ratios would indicate degradation....

- but there is a high analytical uncertainty due to low peaks and high background
- carefully inspect your analytical results, data not reliable!

BACTRAPs (13C-Phenanthrene) in Mesocosms

Preliminary Outcome

- BACTRAPS and ¹³C lab microcosms were the most suitable monitoring methods
- Marginal natural attenuation at the site
- > Very high potential for microbial elimination of contaminants at aerobic conditions
- > Microbial amendment <u>might inhibit degradation</u> at an initial stage of treatment
- Technological treatments will be modified
 - e.g. currency, pulsing, intensity, treatment periods, stimulation cocktail

Improvement of Technologies Better Remediation Efficiency

MySoil: Enhanced Soil Remediation by Auxiliary Fungi

<u>Matrix</u>:

Industrial soil polluted with TPH/PAH

Proposed technology:

- Fungal bioremediation
- We are replacing (baseline):
- Thermal desorption

Design of Mycopile Mesocosm

Layers with Specific Fungal Species

Testing of the MYCOTRAP prototypes in Mesocosms

Installation: 14th of November 2022

Retrieval: 3rd of February 2023

Adaptation of in situ microcosms (MYCOTRAPS) to specific environmental conditions

> Teflon tubes filled with original soil loaded with 13C-Hexadecane

() ()-O

MYCOTRAPS with Teflon and Natural Soil: Phospholipid Fatty Acids Representative for Fungi

- Vital <u>microbial & fungal community</u> on MYCOTRAPS indicated by group-specific PLFA
- ➢ But: Exactly the same community in untreated mesocosms
 → up to now <u>no stimulation effect discernible</u>

¹³C-Hexadecane Incorporation into Phospholipid Fatty Acids (PLFA)

- ¹³C-PLFA patterns show substantial ¹³C-hexadecane elimination performed by intrinsic community
- Successful validation of mycotraps
- > So far no significant difference between untreated control and mycopiles

GCMS Fingerprinting: Prescreening of untreated contaminated soil samples

- Next step: Treated soil samples
 - \rightarrow Change of diagnostic ratios

General Conclusions

- The application of new and efficient remediation technologies is a <u>step-by-step</u> <u>procedure</u> and requires adequate prearrangement and monitoring.
- <u>Testing and success control</u> of contaminant elimination in <u>laboratory assays or</u> <u>mesocosms</u> is an essential element of innovative remediation treatments.
- Don't expect a great success on the <u>first trial</u>.
- Advanced monitoring tools (e.g. BACTRAPS) can be <u>applied and adapted according</u> <u>to environmental conditions</u> (soil, coastal sediments).
- In two LIFE projects (Sedremed, MySoil) <u>ongoing monitoring activities</u> are expected to reveal the feasibility of advanced remediation technologies.

Why Monitoring Investments?

Time

Tools to improve remediation technologies

PILOT SITES

	Spain 1	France	Italy	Spain 2
Location	Huelva (CEPSA)	Rouen, Petit-Couronne	To define (Near Rome?)	Burgos
Activity	Refinery	Refinery (oil and gas activities)	Petrol station	Solar panels
Pollutants	TPH (10-18 g/kg)	TPH (25-30 g/kg)	TPH (~ 8 g/kg)	HTF (biphenil and biphenil ether)
Research partner		Revolution Revolution	UNIVERSITÀ Tuscia	Carried de Astronom
Industrial partner	KEPLER	VALGO	eni rewind	KEPLER
Picture of the site				

Mesocosms design

n. 8 mesocosms of 1 m³ (8 m³ total).

Approx. 7 m³ of HC>12 contaminated soil will be used.

Spent mushrooms compost bale

MYCOTRAP prototypes for the Italian mesocosm experiment

bace		25 cm headspace		25 cm headspace
	4 x MYCOTRAPs	30 cm soil and straw	4 x MYCOTRAPs	30 cm soil and straw
		15 cm NON - INOCULATED STRAW LAYER		15 cm INOCULATED STRAW AND CARYOPSES LAYER
		30 cm soil and straw		30 cm soil and straw
		20 cm drein		20 cm drein
	MYCOPILE CONTRO	L	INOCULATED MESOCO	SMS

Installation: 14^{th} of November 2022

Sediment, Seawater and BACTRAP Sampling

16x Sediment

2 sites, High contaminated site (H; old name site 43) amd Low contaminated site (L; old name site 62) each sampled in

2 cores (A and B) --> 4 cores in total. Each one split in 2 equal parts (longitudinally) and in

4 depths

(transversal cuts at 0-25; 0-50; 50-100; >100 cm). For each depths the two longitudinal parts were carefully homogenised.

2x Seawater

- Bottle Sea Water 3 x 1L from each site (H & L)

8x BACTRAPs

2 lancets (one at each site) covering

- 2 depths (0-15 cm, 35-50 cm) each with
- **2 pollutants** (¹³C-Acenaphthene, -Naphthalene)

Samples received at Isodetect 23rd of Dec 2022 (sediments & seawater) 27th of Feb 2023 (BACTRAPs)

Site	Core	Fraction ID	DEPTH FRACTION (cm)	amount received	storage	metabolite	13C-CSIA	GCMS-Fingerprint
L	Α	LA-1α	0-25	250 ml bottle	-20°C	1	1	1
		LA-1β	0-25	250 ml bottle	+4°C			
		LA-2α	25-50	250 ml bottle	-20°C	1	1	1
		LA-2β	25-50	250 ml bottle	+4°C			
		LA-3α	50-100	250 ml bottle	-20°C	1	1	1
		LA-3β	50-100	250 ml bottle	+4°C			
		LA-4α	100-130	beutel	-20°C	1	1	1
		LA-4β	100-130	beutel	-20°C			
	В	LB-1a	0-25	250 ml bottle	-20°C	1	1	1
		LB-1β	0-25	250 ml bottle	+4°C			
		LB-2a	25-50	250 ml bottle	-20°C	1	1	1
		LB-2β	25-50	250 ml bottle	+4°C			
		LB-3a	50-100	250 ml bottle	-20°C	1	1	1
		LB-3β	50-100	250 ml bottle	+4°C			
		LB-4α	100-130	beutel	-20°C	1	1	1
		LB-4β	100-137	beutel	-20°C			
seawater L site				3 x 1L	+4°C	1		
Н	Α	HA-1α	0-25	250 ml bottle	-20°C	1	1	1
		ΗΑ-1β	0-25	250 ml bottle	+4°C			
		HA-2α	25-50	250 ml bottle	-20°C	1	1	1
		ΗΑ-2β	25-50	250 ml bottle	+4°C			
		HA-3α	50-100	250 ml bottle	-20°C	1	1	1
		ΗΑ-3β	50-100	250 ml bottle	+4°C			
		HA-4α	100-154	beutel	-20°C	1	1	1
		ΗΑ-4β	100-154	beutel	-20°C			
	В	HB-1α	0-25	250 ml bottle	-20°C	1	1	1
		ΗΒ-1β	0-25	250 ml bottle	+4°C			
		HB-2α	25-50	250 ml bottle	-20°C	1	1	1
		ΗΒ-2β	25-50	250 ml bottle	+4°C			
		HB-3a	50-100	250 ml bottle	-20°C	1	1	1
		НВ-3β	50-100	250 ml bottle	+4°C			
		HB-4a	100-170	beutel	-20°C	1	1	1
		ΗΒ-4β	100-170	beutel	-20°C			
cogwater H site				3 x 1L	+4°C	1		

Sediment Cores: Spatial Patterns of PAH Concentrations

- Major pollution at H-site (50 mg/kg)
- Depths with major pollution: L-site 25-100 cm, H-site >100 cm
- Small-scale heterogeneity of amounts

- > Major components at all depths: fluoranthene, pyrene, (50 mg/kg)
- > Punctual highs of phenanthrene, dibenzofuran, dibenzothiophene
- Small-scale similarity of PAH patterns

GCMS-Fingerprints

Fuel Type		Level of Biodegra- dation	Chemical Composition				
				1	Abundant n-alkanes		
				2	Light-end n-alkanes removed		
soline				3	Middle range n-alkanes, olefins, benzene & toluene removed	ion	
Ga	-					4	More than 90% of n-alkanes removed
	Diese	le		5	Alkylcyclohexanes & alkylbenzenes removed Isoprenoids & C ₀ -naphthalene reduced	of biode	
		unker C fi		6	Isoprenoids, C ₁ -naphthalenes, benzothiophene & alkylbenzothiophenes removed C ₂ -naphthalenes selectively reduced	ing level o	
				7	Phenanthrenes, dibenzothiophenes and other polynuclear aromatic hydrocarbons reduced	ncreas	
				8	Tricyclic terpanes enriched Regular steranes selectively removed C_{31} to C_{35} -homohopanes reduced		
				9	Tricyclic terpanes, diasteranes & aromatic steranes abundant		

Altering Patterns of PAH

Weathering Stages

GCMS-Fingerprinting by GC-MS analysis (Single Ion Mode SIM)

Soxhlet-Extraction

Evaluation of Natural Attenuation by Diagnostic Ratios of Compounds

PAHs exhibit different affinities for biodegradation, e.g. 2-ring PAH vs 3-ring PAH; General trend that microbial persistence increase with increasing alkylation, e.g. PAH/(C2-PAH+C3-PAH) \downarrow

