

Social, Economic and Environmental Analyses for Sediment Reuse Applications

Harrington, J.^a, Wijdeveld, A.^b, Wensveen, M.^c, Hamilton, A.^d, Lord, R.^e, Torrance, K.^e, Debuigne, T. ^f, Masson, E. ^g, Zambon, A.^h Maherzi, W.^h, Lemiere, B.,ⁱ Batel, B.^a

^a Sustainable Infrastructure Research & Innovation Group, Munster Technological University, Cork, Ireland
^b DELTARES, P.O. Box 177, 2600 MH Delft, Netherlands
^c Port of Rotterdam, 3198 LK Europoort Rotterdam, Netherlands
^d Scottish Canals, Canal House, Applecross St, Glasgow, G4 9SP, United Kingdom
^e Department of Civil & Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, United Kingdom
^f Ixsane, 23 Av. de la Créativité, 59650 Villeneuve-d'Ascq, Lille, France
^g University of Lille, 42 Rue Paul Duez, 59000, Lille, France
^h IMT de Douai, Lille, France
ⁱ BRGM, BP36009, 45060 Orléans, France

Presented at: 13th International SedNet Conference, Lisbon, Portugal 7th September 2023

Outline of Presentation

- The SURICATES Project
- Background to the Suite of SURICATES Tools Developed
- Tools Application to Pilot Sites/Case Studies Falkirk, Scotland Port of Fenit, Ireland Port of Rotterdam, The Netherlands Port of Calais, France
- Some Overall Conclusions

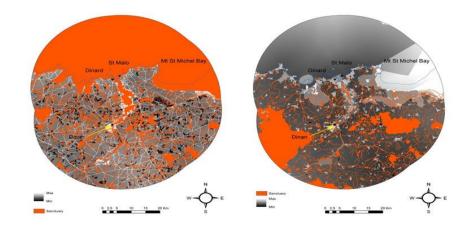
The SURICATES Project

- SURICATES Sediment Uses as Resources In Circular And Territorial EconomieS (2018-2023)
- Funding Programme: EU Interreg NWE
- Aim to increase sediment reuse for erosion & flood protection
- A range of tools were developed, and supported and complemented by Pilot Sites
- Tools developed include:

GIS Social Impact (RAIES) Direct Cost & Sediment Suitability (USAR) Economic Model (SedEcon) Environmental Impact (BROADSEAT)

• Integrated decision-making tools to inform the sediment management sector.

Overall Approach

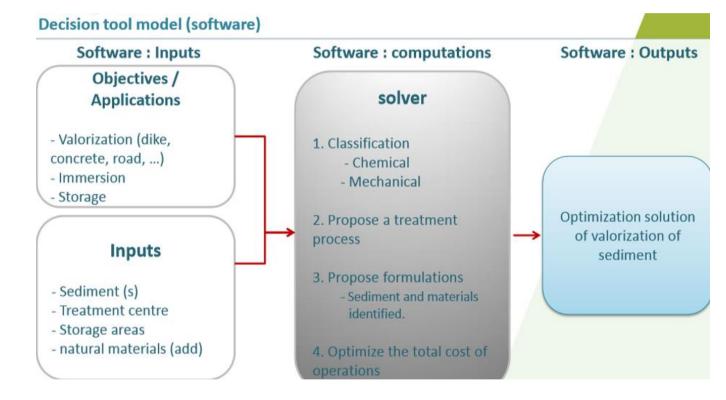


Develop and apply a suite of tools for assessment purposes to a number of sediment management projects/sites across the SURICATES Partner Countries (Ireland, Scotland, France and The Netherlands)

Tool	Summary Output	Output Units
GIS – RAIES University of Lille	Geographical Location Acceptability Score on GIS map	Geo - coordinates Numerical Acceptability Score (Colour Coded)
Direct Cost – USAR IMT de Douai	Suitability of Application Indicative Direct Cost	Y/N €
Economic – SedEcon Munster Technological University	Direct, Indirect & Induced Contributions to GDP/No. of Jobs Created	€, No. of Jobs
Environmental – BROADSEAT University of Strathclyde	Energy, Waste, Environmental & Societal Rating	Numerical Score

- Developed by the University of Lille, France
- The **RAIES** (Repulsion-Attraction-Included-Excluded-Sanctuarised) **GIS tool** aims to provide different stakeholders with a GIS solution to help them find the best location(s) for sediment reuse projects
- It uses a spatial decision support system, which determines the best location available based on inputs from stakeholders
- It uses GIS layers as inputs and provides geographic output
- It provides theoretical relationships between a specific location and an object in a GIS layer (based on stakeholder opinion)
- A multicriteria tool following Nimby/Yimby principles.

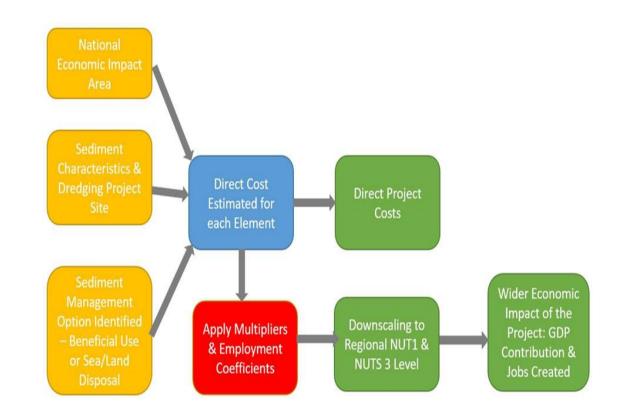
interre


IRICATES

rth-West Europe

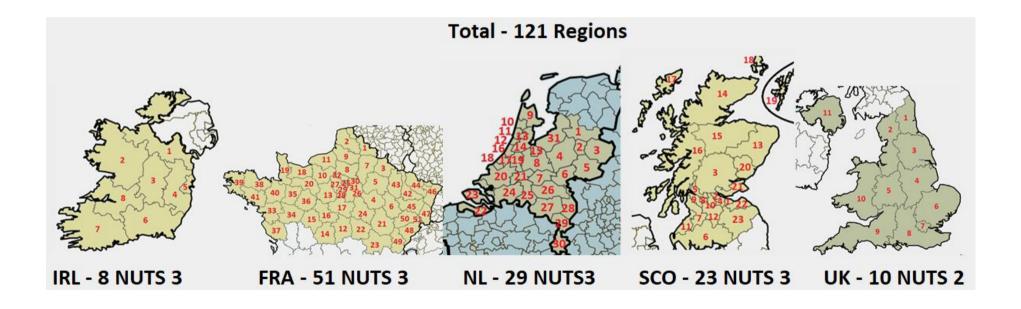
The Direct Cost Tool (USAR) – An Overview

- Developed by IMT de Douai, France
- USAR helps the decision making process for dredged sediment management
- Selection of the most suitable sediment management option is based on criteria including sediment granulometry & chemical characteristics, project costs, environmental criteria, site locations and local & national regulations
- USAR output is an optimised solution for a sediment reuse project with associated direct costs



The Economic Tool (SedEcon) – An Overview

- Developed by Munster Technological University, Ireland
- The model focuses on the **Economic Analysis** and **Evaluation** of sediment management projects
- The approach used is based on **Multipliers** derived from input-output analysis of economic activity
- These input-output models generate a **Multiplier Index** that measures the total effect of an increase in investment on employment or income
- The model has been developed for application in the SURICATES Partner Countries of Ireland, Scotland, France and the Netherlands (and the United Kingdom).



SedEcon - Geographic Spread and Downscaling

- SedEcon is downscaled to a regional NUTS 3 level (except with the UK at NUTS 2 level)
- Application of the Simple Location Quotient approach allows quantification of the concentration of a particular industry or occupation in a region compared to at the national scale.

• Developed by the University of Strathclyde, Scotland

- BROADSEAT (Beneficial Reuse Of Any Dredged Sediment Environmental Assessment Tool)¹ is designed to analyse the environmental merits of a beneficial use dredging project
- It compares a real or hypothetical Beneficial Reuse Option (BRO) to the Business as Usual (BAU) Case
- It is a qualitative assessment on a binary scale 'the better'/'the same'/'worse'
- 54 stakeholder questions are grouped into 4 main categories Energy, Waste, Environment, Societal
- 10 subcategories transport, energy, circular economy, waste management, waste regulation, water environment, ecosystem services, biodiversity & conservation, socio-economic impacts and UN Sustainable Development Goals (SDGs)
- The resulting score comparing the *BRO* to *BAU*.

¹Lord R, Torrance K (2022) BROADSEAT (Beneficial Reuse Of Any Dredged Sediment Environmental Assessment Tool). University of Strathclyde. <u>https://doi.org/10.15129/2e620d12-44bc-42fb-9b14-b0e89a8a7457</u>

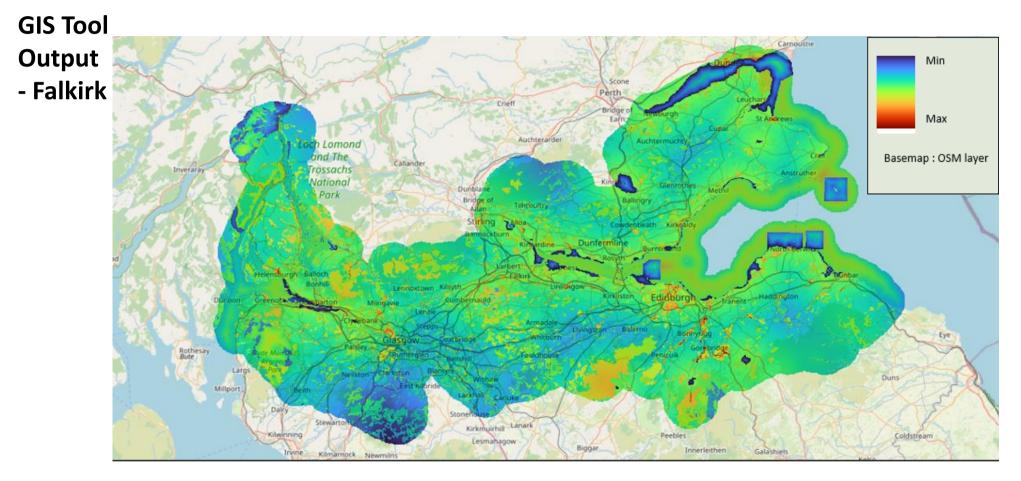
Tools Application to Specific Projects/Sites

SURICATES Partner Country	Pilot Site/Case Study	Site Owner	SURICATES Partner(s) Responsible	Sediment Management Application
Scotland	Falkirk	Scottish Canals	Scottish Canals & University of Strathclyde	Bioremediation
Ireland	Port of Fenit	Port of Fenit, Kerry County Council	Munster Technological University	Disposal at Sea Dyke Construction Wetland Nourishment
The Netherlands	Port of Rotterdam	Port of Rotterdam	Port of Rotterdam & Deltares	Sediment Reallocation
France	Port of Calais	Port of Calais	IMT Douai BRGM	Land Reclamation Breakwater Construction

Falkirk Site, Scotland - General Description

Item	Description	
Dredging Approach	Mechanical	
Sediment Volume	533 m ³	
Dewatering method	Natural	
Treatment method	d Phytoconditioning	
Transport Water transport (1.8 km) +		
	Road transport (38km)	

North-West Europe


SURICATES

Interviewee: Paul Berry, Scottish Canals

Summary Tools Output – Falkirk Project

North-West Europe

SUDICATES

SURICATES					
TOOL	OUTPUT		VALUE		
RAIES	Suitability/Acceptability Score	Graphical Output			
	Direct contribution to GDP	€ 57,343			
	Indirect contribution to GDP		€ 31, 162		
	Induced contribution to GDP		€ 2,697		
con	Direct jobs created		0.41 FTE		
SedEcon	Indirect jobs created		0.21 FTE		
• • •	Induced jobs created	0.02 FTE			
	Overall cost per m ³	€ 108			
	Overall cost per tonne		€ 67.5		
	Sediment chemical properties suitability for chosen application	\checkmark			
A R	Sediment physical properties suitability for chosen application	\checkmark			
USAR	Overall cost per tonne	€ 59.24			
	Transport cost per tonne	€ 9.24			
BROADSEAT	Energy rating [-100:100]	BAU (Landfill Disposal)	BRO	Difference	
		-4	+4	+8	
	Waste rating [-100:100]	+52	+68	+16	
BR(Environment rating [-100:100]	+32	+28	-4	
	Societal rating [-100:100]	+64	+56	-8	

Some Conclusions – Falkirk Project

- Application of tools successful and shows feasibility of the Tools Application concept
- The application of the models to a small scale project has confirmed that the selected phytoconditioning application is suitable for the sediment dredged from a canal environment
- The estimated modelled overall direct cost using SedEcon agrees well with the actual project cost (model validation achieved)¹
- BROADSEAT indicates positive energy, waste & environment ratings with a slightly negative rating for the societal category.

¹Harrington, J. et al.: <u>A downscaled economic model validated and applied to sediment</u> <u>management projects in Ireland and Scotland</u> Journal of Soils and Sediments. 2022 **DOI:** 10.1007/s11368-022-03267-z

Port of Fenit, Ireland - General Description

- The Port of Fenit is a mixed function seaport with ongoing maintenance dredging 1m tonnes of dredging planned
- Dredge Sediment Scenarios:

Disposal at Sea – 'Business as Usual' Wetland Nourishment Dyke Construction

Port of Fenit – Disposal at Sea & Wetland Nourishment

Disposal at Sea

Item	Description
Dredging Approach	Hydraulic Dredger
Sediment Volume	200,000 m ³
Transport	Water Transport (7 km)

Wetland Nourishment

- The nearby wetland area covers approximately 314 hectares and contains silts and clays
- Finer sediments from the Port are potentially suitable for nourishing/enhancing existing valuable wetlands the Bay
- The nearby wetland area covers approximately 314 hectares and contains silts and clays

Item	Description
Dredging Approach	Hydraulic Dredger
Sediment Volume	200,000 m ³
Transport	Water Transport (2.5 km)

Port of Fenit – Dyke Construction

 Flood protection dyke proposed for a coastal stretch with a high probability of flooding (Ref: Irish Office of Public Works) – approx. 4km long dyke, 6m dyke height

Item	Description
Dredging Approach	Hydraulic Dredger
Sediment Volume	200,000 m ³
Imported Rock Volume	24,400 m ³
Dewatering Method Natural	
Transport Water Transport	
	(dredged sediment -
	7km) + Road Transport
	(rock import – 11km)

Overall Summary Output – Port of Fenit

MODEL	OUTPUT	Disposal at Sea	Wetland Nourishment	Dyke Construction
RAIES	Suitability/Acceptability Score	Graphical Output	Graphical Output	Graphical output
	Direct contribution to GDP	€ 1,708,000	€ 2,217,000	€ 6,492,000
	Indirect contribution to GDP	€ 1,002,000	€ 1,251,000	€ 3,722,000
	Induced contribution to GDP	€ 82,100	€ 108,860	€ 327,800
con	Direct jobs created	12.19 FTE	13.45 FTE	36.96 FTE
SedEcon	Indirect jobs created	7.59 FTE	7.79 FTE	21.34 FTE
Ś	Induced jobs created	0.60 FTE	0.67 FTE	1.88 FTE
	Overall cost per m ³ (including transport)	€ 8.54	€ 11.09	€ 32.46
	Overall cost per tonne (including transport)	€ 5.34	€ 6.93	€ 20.29
	Sediment chemical properties suitability for chosen application	\checkmark	\checkmark	\checkmark
AR	Sediment physical properties suitability for chosen application	\checkmark	\checkmark	\checkmark
USAR	Overall cost per tonne	€ 2.5	€ 2.2	€ 9.49
	Overall Cost	€ 800,000	€ 704,000	€ 2,254,800
BROADSEAT	Energy rating [-100:100]	0	+4	-44
	Waste rating [-100:100]	0	+12	+12
OAL	Environment rating [-100:100]	0	+16	+28
BR	Societal rating [-100:100]	0	+52	+44

Some Conclusions – Port of Fenit

- Disposal at sea provides the lowest direct cost
- Wetland nourishment provides the highest positive rating based on BROADSEAT
- SedEcon indicates that dyke construction provides the largest economic impact (but would be the most challenging in other ways)¹.

¹ Harrington et al. (2022), *The Application of a Downscaled Economic Model for Sediment Management Projects in Ireland and The Netherlands*, CERI 2022 Conference, Dublin, Ireland.

Interreg Port of Rotterdam (PoR), The Netherlands - General North-West Europe Description

• Large-scale pilot project involving dredging and reallocation of approximately 500,000 m³ of sediment

Item	Description
Dredging Approach	Hydraulic Dredger (Port Owned Ecodelta)
Sediment Volume	500,000 m ³
Transport	Water Transport (10 km)

Interreg Summary Output – PoR (Sediment Reallocation)

SURICATES MODEL OUTPUT VALUE RAIES Suitability/Acceptability Score **Graphical Output** Direct contribution to GDP € 1,212,000 Indirect contribution to GDP € 675,300 € 61,700 Induced contribution to GDP SedEcon Direct jobs created 10.22 FTE Indirect jobs created 6.41 FTE Induced jobs created 1.44 FTE Overall cost per m³ € 2.42 Overall cost per tonne € 1.51 \checkmark Sediment chemical properties suitability for chosen application \checkmark Sediment physical properties suitability for chosen application USAR Overall cost per tonne € 6.33 € 1.33 Transport cost per tonne BRO Difference BAU (Sea Energy rating [-100:100] Disposal) BROADSEAT 0 +86 +86 Waste rating [-100:100] 0 +24 +24 Environment rating [-100:100] +75 0 +75 Societal rating [-100:100] +44 0 +44

Some Conclusions – Port of Rotterdam

- SedEcon estimated the overall direct cost/contribution to GDP as in general agreement with the actual project cost (further validation of the economic tool)¹
- BROADSEAT model ranked this sediment management approach very positively in the Energy and Environment categories.

¹ Harrington et al. (2022), *The Application of a Downscaled Economic Model for Sediment Management Projects in Ireland and The Netherlands*, CERI 2022 Conference, Dublin, Ireland.


Port of Calais, France - General Description

 Large scale dredging/development project including: Breakwater (> 3 km long) 170-hectare berthing basin 45 hectares land reclamation 3 new ferry berths rail-road-sea infrastructure

An Indicative Analysis

Item	Description	
Dredging Approach	Hydraulic	
Sediment Volume	lume 4,000,000 m ³	
Transport	Pipeline transport (2.5 km) +	
	Road transport (2 km)	
Land reclamation	2,400,000 m ³ (60% sediment)	
Breakwater construction	1,600,000 m ³ (40% sediment)	
Rock Import	170,000 m ³ (30 km)	

Summary Output – Port of Calais

SURICATES					
TOOL	OUTPUT		VALUE		
RAIE S	Suitability/Acceptability Score	Graphical Output			
	Direct contribution to GDP	€ 111,800,000			
	Indirect contribution to GDP	€ 89,600,000			
	Induced contribution to GDP	€ 14,100,000			
con	Direct jobs created	585 FTE			
SedEcon	Indirect jobs created		469 FTE		
•	Induced jobs created	75 FTE			
	Overall cost per m ³	€ 27.95			
	Overall cost per tonne	€ 17.2			
	Sediment chemical properties suitability for chosen application	\checkmark			
AR	Sediment physical properties suitability for chosen application	\checkmark			
USAR	Overall cost per tonne	€ 6.82			
	Overall Cost	€ 43,700,000			
BROADSEAT	Energy rating [-100:100]	BAU (Landfill Disposal)	BRO	Difference	
		-4	+4	+8	
	Waste rating [-100:100]	+52	+68	+16	
BR(Environment rating [-100:100]	+32	+28	-4	
	Societal rating [-100:100]	+64	+56	-8	

Some Conclusions – Port of Calais

- This actual large-scale project was simplified significantly, for tools application purposes
- Tools results are indicative but demonstrate potential application
- BROADSEAT indicates very positive societal & environment ratings and positive ratings for the energy & waste categories.

Some Overall Conclusions

- A suite of tools has been developed in the SURICATES project to assess Social Impacts, Sediment Suitability and Direct Cost, GDP and Employment Economic Impact and Environmental Impact for Sediment Management Projects
- Tools have been applied to a range of sediment management projects: Falkirk Site (Phytoremediation)
 Port of Fenit (Disposal at Sea, Wetland Nourishment, Dyke Construction)
 Port of Rotterdam (Sediment Reallocation)
 Port of Calais (Breakwater Construction & Land Reclamation)
- Each tool has its own strengths and limitations
- This integrated set of tools can provide new insights into the assessment of sediment reuse projects and strategies and can provide the stakeholder community and the decision-making process with an additional resource.

Acknowledgements

- Funding received for the SURICATES Project through the INTERREG NWE Programme and European Regional Development Fund (ERDF)
- A wide range of stakeholders across the SURICATES Partner Countries who provided information, data, advice, guidance and support.

Thank You

