

SEDINNOVE INNOVATIVE SEDIMENT RECOVERY

SedNet Lisbon – Sept. 2023

HAROPA PORT

Key figures

- 5th largest port in Northern Europe
- 1st French port for :
 - foreign trade
 - container traffic
 - energy & chemical products,
- 25m consumers catchment area

CHALLENGES & PERSPECTIVES

CHANGING CURRENT PRACTICES

6 M m3 dredged sediment / year in the Seine estuary, including 4.5 Mm3 in salt water (lower estuary)

- 93 % dumped at sea
- 7 % discharged on land for disposal (upstream sector of the estuary)

HAROPA PORT | Rouen launched a project to reinvent the current linear sediment management model :

SEDINNOVE

to identify solutions for recycling sediment from the lower estuary.

NEO-ECO

Engineering bureau specialized in Circular Economy

METHODOLOGY

SEDIMENT

Inspired from French national approach « SEDIMATERIAUX »

GENERAL CONTEXT

Depletion of natural resources

GUIDELINE

Limiting the consumption of natural resources

Managing the endof-life of products more sustainably

Ensuring that regulations evolve in the right direction

PHASE 1 FEASIBILITY

Sampling and characterisation

STEP 1 - SAMPLING

REPRESENTATIVE SAMPLING PROCESS

Dredging

Hydraulic discharge (land disposal)

Decan

Total sulfur

tio

0,04%

STEP 2 - ANALYSIS

MULTI-USE APPROACH

According to environmental criteria sediments in the lower estuary are considered:

- NON-INERT (PRESENCE OF) CHLORIDES)
- NON-HAZARDOUS
- **NON-ECOTOXIC**

tatio	on Sampling	Homogenisati
	Grain size	100% < 1mm
	Organic matter content	MO < 1,5%
	VBS index	VBS = 0,15
	GTR Classification	B5
	Permeability	K = 10^7
	Major elements	SiO2 = 54,34% SiO, Al2O3, FeO, CaO > 80%
	Pozzolanic activity	Importante après broyage
	Water-soluble sulphates	0,08%
	Acid-soluble sulphates	0,07%
	Water-soluble chlorides	0,005%
	Acid-soluble chlorides	0,02%

5 USE CASES

Concrete, road engineering, landscaping, equestrian industry, cement

PHASE 1 FEASIBILITY

Study of compatible sectors

CRITERIA SCORING RESULTS

SECTOR	RATING
CONCRETE	8/10
CEMENT	5/10
ROAD ENGINEERING	8,5/10
LANDSCAPING	4,3/10
EQUESTRIAN FIELD	4,8/10

Choice of two applications in these two sectors responding to the needs of HAROPA PORT & local territory needs

Formulation of the eco-products

CONCRETE FOR MARINE USE

Integration rate of sediment substituting the sand fraction

0%

30% 50%

Assessment of performance and sustainability STEP 2 - SUSTAINABILITY

SHORT-TERM

Verification of compliance with target performance for each formulation developed

SUBGRADE COURSE

CONCRETE

- EXAMPLES OF ANALYSIS Behaviour with hydraulic binders
 - Resistance class
- Fresh state testing of concrete
- Resistance class

The objective is to identify if the integration of sediment impacts the behaviour of the eco-material

PART OF THE RESULTS

CONCRETE	Compressive Strength class (MPa)			
Formulation	28 days	Моу		
	90,260			
Témoin	79,600	84,9		
	60,170			
	92,340			
30% SED	83,280	86,3		
	83,370			
	72,600			
50% SED	90,030	83,9		
	89,000			

OBJECTIVE > 35 MPa

SUB- GRADE COURSE	Comp.%	W(%)	masse vol- dry Mg/m3	GVmoy	Rthmoy 7 days	
	(100,0)	13.7	1.73	3%	0.18	
	(80,20)	13.3	1.85	1.5%	0.22	
(sed;sab)	(70,30)	13	1.88	1.2%	0.26	
	(60,40)	12	1.92	1%	0.26	
	(50,50)	11	1.97	1%	0.27	

STEP 2 - SUSTAINABILITY LONG-TERM

- Testing applications according to several criteria over a long period of time.
- Simulating attacks to which concrete, and subgrade may be subjected in real-life conditions.
- Validation of the durability of the subgrade materials with a 70%-80% sediment substitution
- Validation of the performance and resistance of XS3 concrete with a 30% sediment substitution over the long term (without reinforcement)

PART OF THE RESULTS

SULFATIC ATTACKS – CONCRETE

- Neo-Eco developed a laboratory dedicated to assessing the environmental quality of the eco-products that are created.
- Testing protocols have been validated by governmental bodies.

RESULTS

- No exceedance invalidating environmental monitoring for the subgrade course
- No exceedance invalidating environmental monitoring for XS3 concrete

CONCLUSION

After 12 months, it has been demonstrated that the eco-products developed have no harmful impact on the environment

Operational economic study

SUBGRADE COURSE

- Differences in composition and process have limited impact on economic profitability.
- The "user" of the sediments can purchase the sediments at a normal aggregate price and stay within its costs. Incorporating sediments into the sub-base manufacturing process is a real opportunity given the rising cost of raw materials.
- Manufacture of sediment-based sub-bases show a good market potential and economic gain.

Producer and sediment owner have a positive economic outcome compared to the reference scenario

> Subgrade course | Comparatif ymin ymax

Operational economic study

CONCRETE

- Economic profitability is not achieved for all the scenarios. It is important to combine this analysis with the choice of composition.
- For the same concrete application, the composition is likely to vary depending on the concrete producer.
- Project size matters in order to minimize the production cost of sediment-based concrete.

Recommended tonnage for production cost optimization of the sediment-based concrete.

PHASE 3 PILOT AT SCALE

Deploy the methodology on a larger scale

OBJECTIVE

Test on a normal scale the implementation of the ecomaterials

STEP 1 - PILOTS Identify pilot project • Internal project of HAROPA PORT • External project STEP 2- SEDIMENTS • Secure sediment deposit • Verify properties at larger scale

Define protocols

recommendations

Implement contracts

Chose the right contractor

STEP 3 - WORKS

CONTR

Validate the preparing process

STEP 4 - WORKS Set up the pilot site

- Prepare sediment
- Implement the eco-materials
- Setup monitoring tools

STEP 6 - EVALUATE

Long-term monitoring of the pilot

- Environmental impact
- Technical performance

- Provide feedback
- Climb the learning curve
- Replicate

PLANNING

Update on deadlines

	YEAR 1		YEAR 2		YEAR 3	
TYPICAL PLANNING	SEMESTER 1	SEMESTER 2	SEMESTER 3	SEMESTER 4	SEMESTER 5	SEMESTER 6
 PHASE 1: FEASIBILITY Sampling & characterisation (3 months) Sectors analysis (3 months) 						
 PHASE 2 : LABORATORY STUDY Formulation (3 months) Evaluation of environmental impact and durability (12 months) 						
 PHASE 3 : FIELD STUDY Previous studies to prepare the pilot site (6 months) Set-up of the pilot site and evaluation (depending on the project) 						

BENEFITS

Responding to environmental challenges through economic performance

SEDINNOVE RESULTS

Characteristics of sediments validation & potential evaluation

Validation of the long-term performance

Validation of local needs and economic pertinence

Validation of the environmental safety

SEDIMENT-BASED TECHNICAL APPLICATIONS READY FOR DEPLOYMENT

MID-TERM BENEFITS

- Development of innovative sediment management and recovery industries with job creation
- Anticipating future shortages of raw materials in the public works and maritime sectors
- Limiting greenhouse gas emissions by increasing waterway transport capacity
- Preservation of natural resources through the production of alternative materials

U neo-eco A world without waste

Sandrine SAMSON

Ecological Transition Project Director

+33 6 80 31 38 43

sandrine.sansom@haropaport.com

34 Boulevard du Bois Guilbert76000 RouenFrance

Ludovic GRABNER Channel & Marine Works Director

+33 7 61 71 73 59

Iudovic.grabner@haropaport.com

34 Boulevard du Bois Guilbert
 76000 Rouen
 France

Benjamin CONSTANT Associate MD

- +33 7 55 60 94 98
- 🖂 <u>bconstant@neo-eco.fr</u>

1 rue de la Source, 59320 Hallennes-Lez-Haubourdin France