

Twenty-years forecast of coastline evolution on sandy coastal stretches in mainland Portugal

Mendes, D., Fonseca, D., Proenca, B., **Bosnic, I**., Pinto, C. and Pires, B.

SedNet Conference 2023

6th September 2023

Introduction

- Notable increase of erosion and consequent overtopping events.
- Lost of around 13.3 km² of coastal territory during 63 y (APA, 2022)
- Efforts on the development of prediciton tools.
- Numerical models appear as a useful tool.

Objectives

- I) Obtaining a full calibrated shoreline evolution model for the Portuguese western coast.
- II) Implementing new design scenarios into the numerical model.
- III) Performing a 20 y forecast of coastline evolution for the Portuguese western coast considering a do-nothing scenario.

Study area

- Portugal western coast •
- **Erosive trend** •
- Highly interventioned coastal ٠ stretches

Esmoriz – Torrão do Lameiro b)

Cova Gala – Leirosa

Barra – Mira

ShorelineS¹ numerical model Model description

- One-line numerical model: seaward/landward displacement are due to longshore sediment transport gradients
- Open source (Matlab-based)
- Vectorized model: efficient for complex shorelines
- Applicable to spatial scale on the order of tens of km and years to decades

¹Roelvink, D., Huisman, B., Elghandour, A., Ghonim, M. and Reyns, J. (2020). "Efficient modeling of complex sandy coastal evolution at monthly to century time scales". Frontiers in Marine Science, 7:535

Model implementations

- Spatial variation of bathymetry orientation along the computational domain
- Shoreline change with a **time-varying mean sea level**
- Possibility to consider several artificial beach nourishments with different volumes along the coastal domain
- Implementation of submerged (nearshore) beach nourishment
- New methodology to determine the sediment transport near the groynes (bypass) and along seawalls

General ShorelineS set up

- 1. Initial coastline: + 3.0 mCD from the LIDAR 2011(DGT) survey.
- Wave Climate: offshore wave data at 50 m water depth (CMEMS¹ – 1993 to 2021).
- 3. Boundary conditions: Neumann (gradient = 0)
- 4. Additional data: beach nourishment at Costa da Caparica (2019).

¹Copernicus Marine Environment Monitoring Service

Model calibration

 According to Kamphuis (2020), the longshore sediment transport (Q) is equal to the potential transport (Q_{CERC}) multiplied by a factor (**qs_{calc}**), i.e:

 $Q = Q_{CERC} \times qs_{calc}$

- According to Roelvink et al (2020), the **active profile height** (berm height D_B + closure depth D_c) can also be used as a calibration parameter

$$\frac{\partial \mathbf{y}}{\partial \mathbf{t}} + \left(\frac{\partial \mathbf{Q}}{\partial \mathbf{x}} + \mathbf{q}\right) / \left[(\mathbf{D}_{\mathbf{B}} + \mathbf{D}_{\mathbf{c}}) \right] = \mathbf{0}$$

• Due to refraction effects on the propagation from offshore to the coast, a shift in the wave incident angle was also tested (\mathbf{d}_{θ})

Model calibration

Parameter	Description	Esmoriz – Torrão do Lameiro (2011-2018)	Barra - Mira (2011-2018)	Cova Gala - Leiros a (2011-2021)	Costa de Capari ca (2018-2020)	Best compromise between sediment transport rates and line to line
D _θ [°]	Shift in wave direction	0	0	0	-50	comparision!
AP _H [m]	Active profile height	10	16	18	10	
h _n [m]	Nearshore water de pth for refraction	15	20	20	15	
qs _{calc}	Sediment transport calibration factor	0.3	0.325	0.31	0.1	
dx [m]	Initial space step	40	40	40	30	Sed
						Net

Wave conditions

• Wave Climate: offshore wave data at 50 m water depth (CMEMS) between 1993-2021.

Esmoriz-Torrão do Lameiro

Wave conditions

• Wave Climate: offshore wave data at 50 m water depth (CMEMS) between 1993-2021.

Cova Gala - Leirosa

Costa de Caparica

(I) Oliveira (2016)¹: -0.6 x 10⁶ m³/yr to -1.5 x 10⁶ m³/yr

(II) GTL - Duarte Santos et al. (2017)² -1.1 x 10⁶

Coastal section	Bias [m]	RMSE [m]	
Cova Gala	-4	20	
Costa de Lavos	-3	53	

¹Oliveira, J. N. C. (2016). Modelação do impacte do prolongamento do molhe northe da embocadura do rio Mondego nas praias adjacentes a sul. Dissertação de Mestrado. Instituto Superior Técnico. ² Duarte Santos, F., Mota Lopes, A., Moniz, G., Ramos, L., Taborda, R. (2017). Grupo de Trabalho do Litoral: Gestão da Zona Costeira: O desafio da mudança. Filipe Duarte Santos, Gil Penha Lopes e António Mota Lopes (Eds). Lisboa (ISBN: 978-989-99962-1-2.

ENGINEERING SOUL. FROM SOURCE TO

Net

Shoreline evolution (2043)

do Lameiro

Esmoriz-Torrão

• Potential scenarios:

- Beach nourishment (single or multiple)
- II) Shoreface nourishment (single or multiple)
- III) Adding/removing groynes
- IV) Detached breakwater

Shoreline evolution (2043)

- Potential scenarios:
- I) Beach nourishment (single or multiple)
- II) Shoreface nourishment (single or multiple)
- III) Adding/removing groynes
- IV) Detached breakwater

Discussion and Final remarks

- The required modification (proposed by Kamphius¹) in the sediment transport factor (qs_{calc}) accounts for differences between the potential and efective longshore sediment transport.
- Also, this modification is likely to incorporate uncertainties associated with:
 - The use of wave linear theory (for wave propagation and transformation)
 - The use of semi-empirical longshore sediment transport (CERC formula)

¹Kamphuis (2020). Introduction to Coastal Engineering and Management, World Scientific, 544 pp.

Discussion and Final remarks

- The coastal design implementations performed in the model allow a wider application of ShorelineS.
- The inclusion of spatial variation of bathymetry orientation and time-varying mean sea level allow for more realistic simulations.
- Also, new methodologies for calculating sediment transport near groynes and along sea walls induces a better performance of the model.
- The lack of quantitative information on the errors associated with shoreline modeling in similar works prevents a further comparison on model performance.
- A full-calibrated model was obtained for four coastal stretches along the Portugal western coast with both **line to line** and **sediment transport calibration**.

Acknowledgements

Contacts

HAEDES Portugal

Rua Campos Júnior 11, 1A 1070-138 Lisboa Portugal

<u>www.haedes.eu</u>

Ivana Bosnic ivana.bosnic@haedes.eu

ShorelineS numerical model Sediment transport

$$\frac{\partial n}{\partial t} = -\frac{1}{D_c} \frac{\partial Q_s}{\partial s} - \frac{c}{\tan \beta} RSLR + \frac{1}{D_c} \sum q_i$$

• Sediment transport rate (CERC):

$$Q = K \frac{\rho \sqrt{g/\gamma_b}}{16(\rho_s - \rho)(1 - n)} H_{sb}^{5/2} sen(2\theta_b),$$

Model implementations

• Determination of k in eq. (I) according to Mil-Homens¹

(I)
$$Q = K \frac{\rho_w \sqrt{g}}{16(\rho_s - \rho_w)(1 - n)\sqrt{\gamma}} H_b^{5/2} \sin(2\alpha_b) \qquad K = \frac{1}{2232.7 \left(\frac{H_b}{L_o}\right)^{1.45} + 4.505}$$

 New methodology to determine the sediment transport near the groynes (bypass) and along seawalls

¹Mil-Homens, J., Ranasinghe, R., de Vries, J. V. T., & Stive, M. J. F. (2013). Re-evaluation and improvement of three commonly used bulk longshore sediment transport formulas. *Coastal Engineering*, *75*, 29-39.

One-line numerical models

- Seaward or landward displacement of the shoreline position in time (dy/dt) is due to longshore sediment transport gradients (dQ/dx)
- If Q is very large between two adjacent cells but dQ/dx = 0, there will be no seaward/landward shoreline displacement!
- If Q is very small between two adjacent cells but dQ/dx ≠ 0, there will be a seaward/landward shoreline displacement!
- The model is driven by gradients in the longshore sediment transport

$$\frac{\partial \mathbf{y}}{\partial \mathbf{t}} + \left(\frac{\partial \mathbf{Q}}{\partial \mathbf{x}} + \mathbf{q}\right) / \left(\mathbf{D}_{\mathbf{B}} + \mathbf{D}_{\mathbf{c}}\right) = \mathbf{0}$$