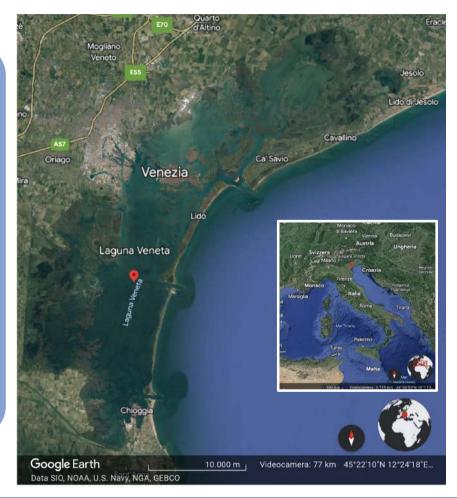


The WoE approach applied to the sediments characterization to the lagoon environment: the Venice Lagoon case


Maurizio Ferla¹, Antonella Ausili¹, Chiara Maggi¹, David Pellegrini¹, Fulvio Onorati¹

¹National Institute for Environmental Protection and Research, 00144, Rome, Italy

13th International SedNet Conference, 6-8 September 2023, Lisboa (Portugal)

Summary

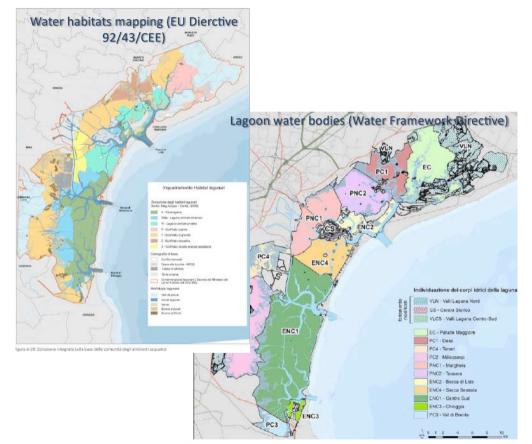
- The lagoon of Venice. Natural and anthrpogenic pressures
- The morphological degradation and the loss of sediments
- The management of sediment in the last decades. The 1993 protocol.
- The new regulaton and the WoE approach.
 The 22nd May 2023 Ministry Decree
- Further perspectives

The Venice lagoon 550 sq km. The largest brackish water body in the Mediterranean

- Small islands, extensive tidal flats, salt marshes, fish farms and a complex tidal channels network;
- high heterogeneity in physical and biochemical habitat conditions
- 3 mt the averege water depth
- Semidiurnal astronimic tidal regime (1 mt max amplitude)
- 20 spring rivers discharge into the lagoon
- Watershed 2000 sq km

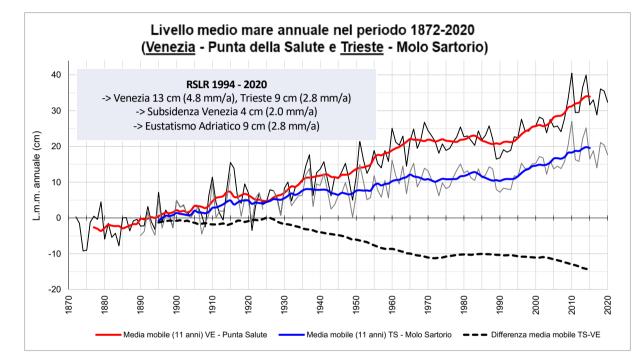
Port facilities Fishery, Cruise terminal, Industrial area

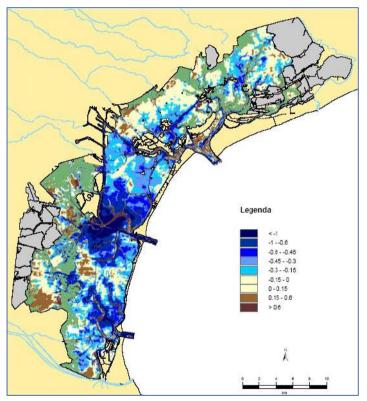
Coping with marine floods – The Mo.S.E. system



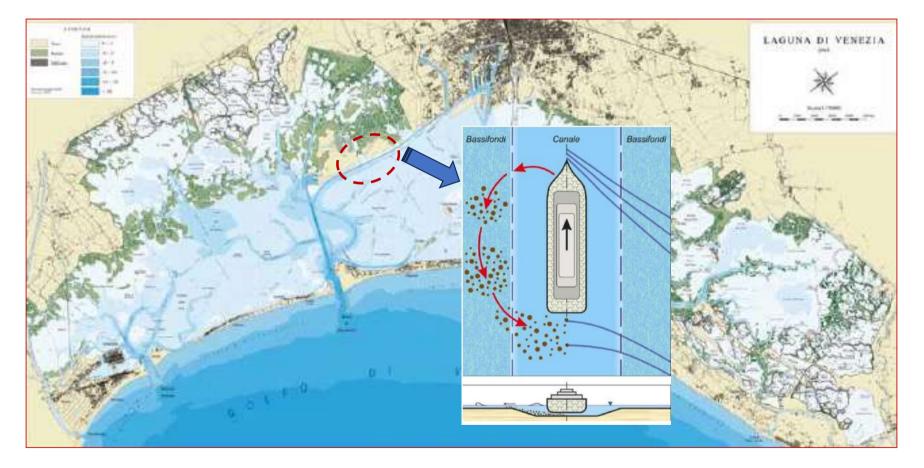
The lagoon of Venice. Natural and anthrpogenic pressures

Extreme weather conditions are included among the sources of a widespreaad alteration of the morphological status of the lagoon.


- Strong local winds blowing on water surface induce the surge of a remarkable wave motion (H_{wmax} = 2 mt into the lagoon)
- Wind waves are a the basis of relevant sediment suspension from the shallow water bottoms (tidal flats) and at the basis of the erosion of the salt marshes edges
- 600.000 m³/y average estimation of total amount of eroded sediments
- Effects on the lagoon habitat status and on the water bodies ecological status


Source: Provveditorato OO.PP. Per il Veneto, Trentino Alto Adige, Friuli Venezia-Giulia. Aggiornamento del piano per il recupero morfologico della laguna di Venezia. Documento di Piano. Marzo 2021

General sinking of shallow waters and Relative Sea Level Rise


- Widespread erosion. Very strong at the center of the lagoon
- The loss of trasitional environmental features
- The lagoon seams becoming a bay

Source: Provveditorato OO.PP. Per il Veneto, Trentino Alto Adige, Friuli Venezia-Giulia. *Aggiornamento del piano per il recupero morfologico della laguna di Venezia*. Documento di Piano. Marzo 2021

The lagoon of Venice. Natural and anthrpogenic pressures


The morphological decay and the loss of sediments

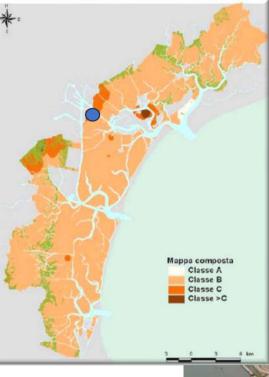
Extreme events, RSLR and poor load of sediment from watershed at the basis of the morphological decay

- 1,4 x 10⁶ cbm/y the amount of sediments for keeping the current lagoon morphological status according to the latest RSLR rate (4.8 mm/y)
- 8,0 x 10⁶ cbm/y the amount of sediments requested to mantain the current lagoon morphological status according the worst IPCC Scenario (RPC 8.5)

Critical issues

- Availiability of large amounts of sediments
- Qualitative and phisical compatibility
- Environmental issues and cost-effectivness in the operations of displacement inside the lagoon

Source: Prof. L. D'Alpaos (DICEA, Università di Padova) – L'evoluzione morfologica della laguna di Venezia attraverso la lettura di alcune mappe storiche e delle sue carte idrografiche



The management of dredged sedments. The 1993 Protocol

ELEMENTI E COMPOSTI	CLASSE	CLASSE	CLASSE	
COMPOSIT	"A" (mg/kg)	"B" (mg/kg)	"C" (mg/kg)	
Hg	0.5	2.0	10	11
Cď	1	5	20	
Pb	45	100	500	
As	15	25	50	
Cr	20	100	500	
Cu	40	50	400	
Ni	45	50	150	
Zn	200	400	3.000	
Idrocarburi totali	30	500	4.000	
IPA totali	1	10	20	
PCB totali	0.01	0.2	2	
Pesticidi org. clorurati	0.001	0.02	0.5	

4 risk classes (threshold chemical concentration)

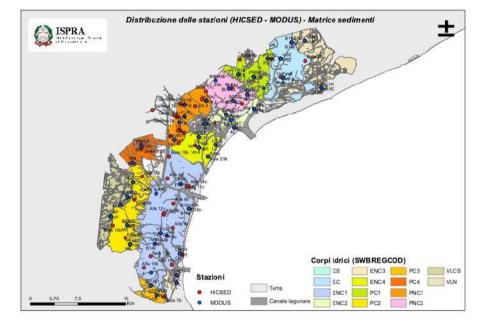
- A Sediments for morfological restoration
- B Island restoration. Permanent separation from water bodies and no flooding erosion risk (high tides)
- C Widening/rising islands and permanent separation from water bodies by means deep foundations
- OVER C Management as waste outside of the lagoon or into landfill waterproof area

Critical issues

- Most of sediments in Cl B
- Few chance to found new landfill area

Knowledge improvements and EU Directives

- Extention of the list of pollutant compounds with respect to the 1993 Protocol
- Standard Environmental Quality (SEQ) according to the WFD (water column, sediments and biota)
- The WoE approach in the field of marine sediments The Environment Ministry Decree DM 173/2016


net o		Protection angle 12993 260-2014 780-2014 780-2014 500-400-400-400-400-400-400-400-400-400-																							
		Faught	Í	DM 260/201 Tab 2/ SQA-M	DM 260/ Ta 50	DH 260/2010 Db 3/A SQA HA Bioto	DLgs 172/2015 Tab 2/A SQA-MA	DLgs 172/ DD	DLgs 172/ Ta SQ	DLgs 172/	DM 173/			Parametro	Protocollo Fanchi 1993	(Tab 2/A SQA-MA	T40 3/B 50A-MA	QA-MA Blob	Tab 2/A SQA-MA	th 3/12/2015 Thb 3/A SQA-HA	gs 172/2015 Tab 3/B SQA-MA	Lgs 172/2015 Th L/A SQA HA Blod	DM ^{173/2016}	
	A	8	C	-							ш	12				· · · · · ·	- ·	• •	0 2	5	2	5	5 0	0	
Elementi in tracce				mg kg1	ing kg '	HE NE	II-6-Kg-1	mg kg 1	mg kg-1 p.s.	mg kg-1 p.s.	mg ag "	mg kg 1			•	ĭ•									
Arsenico	15	25	50	рь	12		P.5.	ps.	12		12	<u>р.s</u> 20				1	-					-			
Cadmio	1		20	E.0		-	0,3	0,3			0,3	0,80	1	Antragene		-	-45			24			1	24	24
Cromo	20	100		-14	50				50		50	190	1	Berno(a)antracene						-			1	75	212
Cr VI					2				1		2	2	· · ·	Borzo[a]pirene			30		-		30		1 5	30	
Rame	40	50	400					-	1		40	52	· · ·	Senzo[b]fluoranterie		-	40		-	-	40			40	
Mercurio	0,5	2	10	0,3		20	0,3	0,3	1	20	0,3	0,80	- i					-	_	_		_	-		
Nichel	45	50	150	30	1						30	75	1	Benzo[k]fluorantene			20	-	-	_	20	_		20	
Plombo		100		30			30	30			30	70	1	Benzo[g,hJ]periene		-	55	_		_	55			55	
Zinco	200	400	3000								100	150		Crisene										108	
Contaminanti				HE KG 1	HENG	HE KE	PE NE"	HE KE	副: 相引	HE HE	HE HE	HE HE		Indenopirene		1	70				70			70	
organici Composti	-	-	-	24	pa.	рs	2.4	дs. s	29	ps	2.4	<u>дs</u> 72		Ferizintrene				_		_	112			87	1 201
Composti organostannici				(tributil-			dributs	(tributit)				12		Flubrene										21	14
en and a second a				stagno)			stagno)							Fluorante ne			110				110		30	110	149
D DCB	0,01		- 2		В	-	- main a		8		8	60		Naffalone			35			35			1.000	35	
Σοορ	0,001		0,5	0,8			0,8				6,8	7,8		Pirene								_		153	1. 14.17
TDDE	0,001		0,5	1,8			1,8	1,8		-	1,8	3,7		TTE. PCDO.PCDF			24	50E-03	_	-	2,00E-03		6555.02	2,005-03	
Σροτ	-0,001	1.0.12		1			1	1	i	50* 100 **	1,0	4,8		(Diossine e Furani) e PCB diossine simili							4,000.03		6,56,05	2,100-03	2,000-0
Clordano	0,001		0,5								2,3	4,8		PCDD/F			_	_	-	-	_	_		-	
Aidrin	0,001		0,5	0,2		1	0,2				0,2	10					_	-	-	_		_		-	
Diektrin		0,82	0,5	0,2		-	0,2	0,2			0,7	4,3		PC8 diossina simili			_		_						
Endrin	0,001		0,5						1		2,7	10		Dilenieteri bromurati			_		1	-			0,0085		
C-HCH	-0.001		0,5	0,2			0,2		1		0,2	10		Dicofol									33		
D-HCH	100 C 20 C	6,92	0,5	0,2			0,2				0,2	10		Acido									9,1		
 HCH (Lindano) 	0,001	0,02	0,5	0,2			0,2	0,2			9,2	1,0		perfluorottansolfonico											
Eptacioro epossido					_		-				0,6	2,7		e suol Sali (PFDS)			_		_						
HCB				0,4		10		0,4		10	0,4	50		Sabromociciodode cano									167		
Esaclorobutadiene						55	1			55				(KBCDD)			_	_	_	_				-	
idrocarburi C>12		500			-	-	-		-			50000		Episcioro ed epitacioro									6,70E-03		
SIRA(16)	1	10	20		800						900	4000		epossido				1			-				

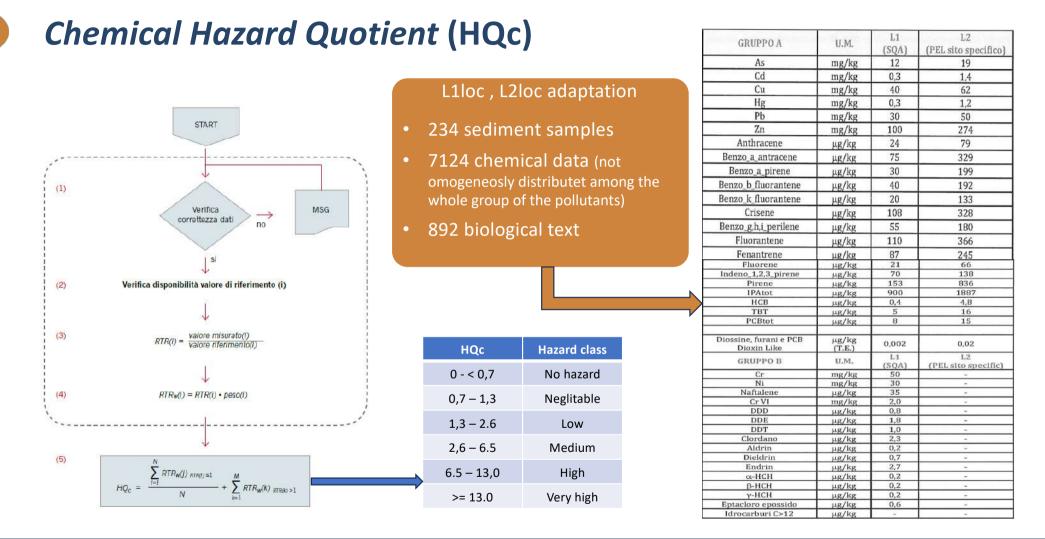
Source: A. Marcomini. Per una gestione sostenibile del sedimento lagunaxe. Il contributo del DM 173/2016 alla valutazione della qualità del sedimento. La trasparenza a salvaguardia di Venezia. Quaderni della laguna. Anno 0, vol. 0, 2017

The WoE aproach. New chemical action levels in the lagoon of Venice

- Deep and wide scientific investigations on environmental risk with respect of a group of chemical stressors (perisistent, toxical, bioaccumulation) in the last decades
- Only chemical caracterization on sediments is not able to predict ecotoxicological and bioaccumulation effects
- Extended monitoring activities and new methodological approach (WoE by the integration of different lines of evidence)
- A series of specific projects (ICLSEL, SIOSED, HICSED) have pointed out that there is no scientific evidendence in the separation of class risk A and B
- Most of the class risk B sediments didn't show any statistical relevant toxicty with the respect of the main pollutant substances

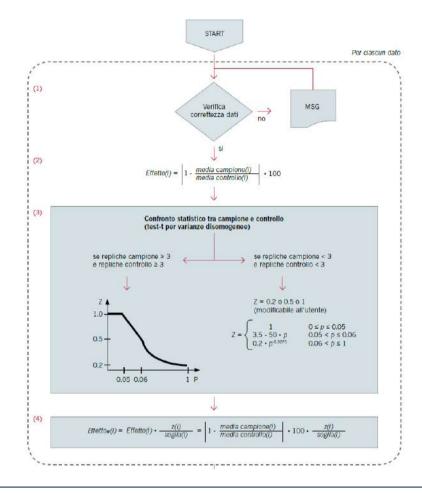
New guidelines for the management of sediments in the lagoon of Venice (Ministry Decree 22 maggio 2023 n° 86)

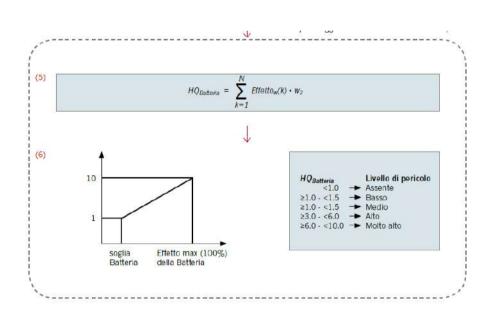
- Technical and operational details to follow for the environmental investigations on dredging site and desposit site (salt marshes, tidal flats)
- Environmental monitoring planning details (hydrodinamics, water column, turbidity, etc)
- Sediments quality assessment and new class risk allocation according a WoE criteria by mean the integration of chemical data and ecotoxicological data aimed at their reuse with respect the needs of conservation of the lagoon
- EU Environmental Directives Consistency (WFD, Waste Directive, Habitat & Birds Directives)
- Not worsening criteria as regard as the environamental conditions within the deposit site and within the water body.


The WoE approach – An adatpation of the marine sediments approach The Environment Ministry Decree DM 173/2016

The sediment quality classes is assigned following the integration of chemical and ecotoxicological data using weighted criteria.

The chemical classification Number, magnitude and tipology of pollutant exceeding 2 action levels specifically assessed for the lagoon envirnomet (L1loc, L2loc) The indexing of ecotoxicological responses Relevance of measured endpoints, tested matrix, time of exposure, magnitude and statistical difference of effects compared to specific thesholds of all the assays of the battery


Syntetic hazard indices for chemical and ecotoxicological data are provided By means their integration a quality class can be assigned to the sediments.



Ecotoxicological Hazard Quotient (Hqecotox)

Quality risk classes and option for the management of sediments inside the lagoon of Venice

Risk class	Bioacc.	Ecotox	Chemical	Option of management					
Alpha (surface layer < 0.5 mt)	[X] "average" ≤ D.Lgs. 172/15		[X] "media" ≤ SQA	No restrictions in the reuse for morphological restoration					
Alpha (deep layers > 0,50 mt)		No hazard (HQ < 1)	[X] ≤ SQA + 20%	Monitoring planning according to new guidelines					
Beta		No hazard/Low (HQ < 1,5)	HQ (L2 _{Loc}) < 1 No hazard	Reuse for morphological restoration Not worsening the class risk of sediments in the deposit site and monitoring planning					
Gamma		Medium (-1,5 ≤ HQ < 3)	HQ (L2Loc) ≤ Low	Reuse for morphological restoration with an ovelay of better quality sediments (no direct connection to the nearby water					
Delta		High 3 ≤ HQ < 6	Low < HQ (L2 _{Loc}) ≤ High	bodies) Permanent displacement in waterproof landfill area					
Epsilon		- Very High HQ ≥ 6	HQ(L2 _{Loc}) >High						

Concluding remarks

- The new gudelines had arised relevant expetcations among the stakeholders
- Port facilities improvements
- Environmental issues for the sefeguarding of the lagoon
- A first implementation period (2 years) has been established in the perspective of acquaring new data, knowledge improvments, a better tailoring of the metodolgy and the probable upgrading action level values
- A general morphological restoration planning (PMLV) is already available and its upgrading is underway in the context of Environmental Strategic Assessment (Eu Directive)
- A crucial issues of the PMLV is the identification of those strategic interventions (salt marches/tidal flats restoration) by means the sediments can be reused with respect of new guidelines of management

Thank you

www.isprambiente.gov.it/it