

Towards net-zero sediment management of inland waterways – comparing embedded and embodied carbon emissions for dredging and reuse scenarios

Richard Lord & Keith Torrance Alasdair Hamilton & Paul Berry Peter Berry University of Strathclyde Scottish Canals Canal & Rivers Trust

13th International SedNet Conference, Lisbon, 6-8 Sept 2023

https://www.visualcapitalist.com/sp/race-to-net-zero-carbon-neutral-goals-by-country/

Typical inland dredging

Typically transported for disposal

Fuel use emissions – embodied C

 Example from CRT – up to 100,000 tonnes dredged every year (exc. Water Injection Dredging type works);

						GHG emissions (Tonnes	
Annual Carbon Emissions for NDT contract (2019/20)						CO2 equivalent)	
on-site generators and plant							
total red diesel purchased			151,668	litres		418.30	31%
mobilisation							
estimated mobilisation distance			7,000	miles			
CO2 emissions		4,043.884	gCO2/mile	9	28.31	2%	
personnel transport							
petrol			9,579.2	litres		21.04	2%
diesel			69,754.8	litres		178.57	13%
<u>Disposal</u>							
<u>haulage</u>							
estimated mileage		1,299,126	miles		693.82	52%	
			(c. 55,000 ton	nes of waste)			
total annual carbon budget of NDT Team						1340.04	

Canal & Organic matter in sediments -embedded (biogenic) C

- Example from CRT up to 100,000 tonnes dredged every year (exc. Water Injection Dredging type works);
- Total GHG fuel emissions 1340 (T CO₂ equivalent)

Total dredged sediment	100,000 Tonnes		
Total on dry basis (@ 38% dry matter)	38,000		
Total organic matter (@ 12% SOM)	4560		
Total C (assuming SOM = 58% SOC)	2645		
Equivalent CO_2 (assuming 1 T C = 3.67 T CO_2)	9706		

So embedded (biogenic) C in dredged sediment is 7 x embodied C from operational fuel emissions of dredging & transport for disposal/reuse

So need to consider fuel use AND potential release of C from dredging method & fate

Disturbance by dredging and impact on the carbon cycle

- Are in situ sediments a source of GHG emissions or a future carbon sink (blue carbon)?
- If navigational disturbance and dredging releases GHGs is sediment removal beneficial?
- What are the GHG impacts of different dredging and disposal methods

Freshwater carbon cycle

GHG Impacts of dredging methods / disposal options (and C storage potential?)

1. Ploughing and similar methods (reallocation & suppletion)

- 1. Fuel use low
- 2. Disturbance of sediment minimal
- Future GHG emissions- as before?

SURICATES

2. Standard UK canal dredging method, hydraulic excavator into barge, or occasionally direct to bank

2. (cont.). Most commonly, excavated into barge, so doublehandling to bank or road transport for disposal/reuse

- 1. Fuel use (plant, haulage, staff, site) high
- 2. Disturbance of sediment moderate to high
- 3. Future GHG emissions highly variable/site-specific
 - 1. high (cement addition, landfill)
 - 2. low (topsoil use)
 - 3. negative (energy crops, nature-based carbon capture)

3. Novel cutter suction dredging, hydraulic transport of sediment & lagoon dewatering

- 1. Fuel use lower (especially transport)
- 2. Disturbance of sediment high
- 3. Future GHG emissions low or negative if reused for soil & substituting primary aggregates

(2) Conventional excavation, barge transfer & road haulage, recycling & reuse for soil

The UK is to rejoin the EU's flagship scientific research scheme, Horizon, the

government has announced.

GETTY IMAGES

UK-based scientists and institutions will be able to apply for money from the $\pounds 85 \text{bn}$ fund from today.