

Impact of climate change scenarios on sediment load assessments

Ewa Szalińska¹, Paweł Wilk², Paulina Orlińska-Woźniak², Agnieszka Wypych³

- AGH
- ¹ AGH University of Science and Technology, Cracow, Poland
- ² Institute of Meteorology and Water Management, Warsaw, Poland
- ³ Jagiellonian University, Cracow, Poland

POLLUTANT TRANSPORT IN A CATCHMENT INTERDISCIPLINARY RESEARCH GROUP http://ochrsrod.agh.edu.pl/index-en.html

13th International SedNet Conference 6-8 September 2023, Lisbon, Portugal

Impact of climate change scenarios on sediment load assessments

- Modelling of sediment yields & loads
- Scenarios' variants
- Model response under 3 different climate change scenario choices:
 - data choice/availability point vs. areal approach
 - reference period 10 vs. 30 years
 - dry, wet, and average scenario ensembles
- Take-home message for modellers

Modelling sediment loads

- Upper Raba River, Carpathian Mts.
- 768 km² of the catchment
- Dammed reservoir as a trap for sediments
- Soil loss enhanced by climate changes

Source: Wilk et al. 2022

Modelling sediment yields & loads

• Digital platform DNS/SWAT (Discharge-Nutrient-Sea/Soil Water

Assessment Tool)

- Baseline scenario created based on:
 - Digital Elevation Model
 - Soil and land use maps
 - Meteorological Data
 - Point and non-point pollution sources
- Land phase: sediment yield t/ha
- River bed phase: sediment load t/y,m,d

Source: Wilk et al. 2022

Baseline scenario

RESEARCH UNIVERSITY EXCELIENCE INITIATIVE

AGH

	Sediment yield	Sediment load
Average yearly	3.4 t/ha/y	6 096 t/y
Average monthly	0.3 t/ha/m	508 t/m

AGH

Scenarios' variants

- Variant scenarios in the SWAT model
- Land use
- Agricultural practices
 - Fertilization,
 - Crop rotation,
 - Buffer zones
- Climate change

Weather Adjustmen	ts						
Parameter: RFIN	c ~ 0	Jan 32.3	Feb 64.3	Mar 23.6	Apr 94.8	May 0.2	Jun 9.3
		Jul 8.4	Aug 14.8	Sep 3.4	Oct 40.6	Nov 27.5	Dec 110.3
Edit Values	Extend Paramete	er Edits . SUB Paramete	rs	- Selected Su Subbasing	bbasins s		
Cancel Edits							
Save Edits	Extend Edi	ts to Current Su ts to All Subbasi	bbasin ins				
	Extend Edi	te to Selected S	hbaaina				

Climate change scenarios (1st)

- Projection of climate change for Poland based on CHASE-PL downscaling the EURO-CORDEX data (Mezghani et al., 2017);
- Precipitation and temperature changes (RCP4.5 & RCP 8.5);

Source: Orlińska-Woźniak et al., 2020

4.50 -3.75 -3.00 -2.25 -1.50 -0.75 0.00 0.75 1.50 2.25 3.00 3.75 4.50 5.25 6.00

Ens. mean of absolute changes in mean temperature (2071-2100 w.r.t. 1971-2000) [°C]

UNIVERSIT

AGH

60 45 40 35 30 25 20 15 10 5 10 15 20 25 20 56 40 45 50 Ens. mean of relative change in monthly sums of precipitation (2071-2100 w.r.t. 1971-2000) [%]

scenarios (1st)

Climate change scenarios (1st)

Sediment yield changes: baseline scenario vs. changes in individual climate scenarios

Source: Orlińska-Woźniak et al., 2020

agh.edu.pl

RESEARCH

Climate change scenarios (2nd)

- Projection of climate change for Cracow - Development of Urban Adaptation Plans (UAP) for cities with more than 100,000 inhabitants in Poland
- Precipitation and temperature changes (RCP4.5 & RCP 8.5);
- Future horizons: 2026-2035 & 2046-2055

UNIVERSIT

AGH

Source: Szalińska et al., 2021

Climate change scenarios (2nd)

Sediment yields from different type of land use

UNIVERSITY

AGH

Why April?!

Also in other catchments...

Source: Szalińska et al., 2021; Wilk et al., 2022

Climate change scenarios (3rd)

- Is the data from a single meteorological station good enough? (point vs. areal approach)
- Does the reference period matter? (10 vs. 30 years)
- What are the differences between models? (dry, wet, or average ensembles)

Point (P) vs. areal approach (A)

10-year reference period (2006-2015)

RESEARCH UNIVERSITY

AGH

Sediment loads t/y	base	RCP451 P	RCP452 P	RCP851 P	RCP852 P	RCP451 A	RCP452 A	RCP851 A	RCP852 A
	6 096	8 133	8 232	7 817	8 928	9 284	8 841	8 751	10 372

Reference period – 10 vs. 30 years

RCP 4.5 h1 precipitation [mm] RCP 4.5 h2 RCP 8.5 h1 RCP 8.5 h2 - 10

10 years (2006-2015)

30 years (1991-2020)

Reference period – 10 vs. 30 years

10 years (2006-2015)

30 years (1991-2020)

	haaa	RCP451	RCP452	RCP851	RCP852	RCP451	RCP452	RCP851	RCP852
	Dase	10	10	10	10	30	30	30	30
Sediment loads t/y	6 096	9 284	8 841	8 751	10 372	9 066	8 543	8 797	10 127

Moisture content in scenarios

	CNRM_CLM	CNRM-AL.	CNRM_SMHI	ICHEC_KNMI	ICHEC_DMI	ICHEC_CLM	ICHEC_KNM	ICHEC_SMH	IPSL_WRF	MPI_CLM	MPI_MPI	MPI_SMHI	MPI_WRF	NCC_DMI
JAN	50.8	14.7	32.2	37.4	75.0	39.9	38.9	39.1	70.8	70.6	56.1	50.4	44.3	111.7
FEB	49.9	18.3	25.9	31.7	27.5	25.9	25.0	12.0	63.6	59.8	50.8	28.8	29.2	67.6
MAR	32.9	41.6	45.1	-18.2	52.0	25.0	-0.8	11.4	39.5	53.2	49.7	35.6	31.9	85.7
APR	33.9	38.0	53.5	-17.0	19.8	12.5	-16.9	21.7	30.7	51.5	25.9	57.8	24.2	72.1
MAY	-4.9	26.7	27.0	-0.4	30.0	-5.3	7.1	44.4	49.7	-4.1	0.3	33.9	17.4	33.6
JUN	-29.0	1.0	28.7	-5.4	23.2	-14.0	-6.0	29.7	22.5	3.9	-4.6	12.7	30.9	1.9
JUL	-46.3	-0.1	8.3	-25.0	16.6	-34.5	-12.2	-4.5	-14.8	16.9	-4.8	0.0	19.0	7.2
AUG	-32.0	-6.9	-1.8	-13.7	28.6	-20.9	-3.6	-10.6	-28.6	7.1	4.4	10.7	33.4	17.3
SEP	1.1	1.0	8.1	-6.4	43.4	-19.4	-12.1	1.0	-2.6	3.7	-12.9	8.6	-16.3	11.9
ост	37.3	11.8	33.3	18.8	73.0	25.3	16.6	42.3	24.0	49.4	35.9	50.2	43.9	61.6
NOV	39.8	17.6	15.7	10.1	35.3	7.9	17.8	-3.2	51.7	35.9	21.7	24.1	11.9	68.6
DEC	23.1	-8.8	-0.4	12.9	55.8	6.8	2.6	-10.1	54.3	45.8	42.1	23.5	16.4	56.8
mean	13.0	12.9	23.0	2.1	40.0	4.1	4.7	14.4	30.1	32.8	22.1	28.0	23.9	49.7
		dry		dry	wet	dry	dry			wet		wet		wet

Precipitation differences = 100 * (Model_{future} / Model_{reference} - 1)

 $< 0 - dry; 25^{th}$ percentile $< 1.1 - dry; 75^{th}$ percentile > 39.2 - wet

Moisture content in scenarios

- Dry (D)
- Wet (W)
- Average (A)

RESEARCH

AGH

Sediment loads t/y

base	RCP451	RCP452	RCP851	RCP852	RCP451	RCP452	RCP851	RCP852	RCP451	RCP452	RCP851	RCP852
	A	A	A	Α	W	W	W	W	D	D	D	D
6 096	9 066	8 543	8 797	10 127	10 487	10 920	10 286	12 497	7 445	8 041	8 150	8 050

AGH

Take-home message

- Point vs. Areal areal better reflects catchment features (if variable);
- 10 vs. 30 longer reference period more reliable for precipitation changes, but necessary for flows/yields/loads (monthly distribution);
- Dry, Wet, Average check your model ensemble for the moisture content;
- Make friends with a climatologist $\ensuremath{\textcircled{\odot}}$

Thank you

This research was partly supported by the program "Excellence initiative–research university" for the AGH University of Science and Technology.