Mapping and quantifying methane emissions from contaminated fibrous sediment

Alizée Lehoux, Erik Sahlée, Sarah Josefsson, Julie Falise, Daniel Sopher

13th SedNet conference, 6-8 Sept 2023 - Lisbon

VINNOVA

UPPSALA UNIVERSITET

Fibrous sediments in the aquatic environment

- Waste from pulp & paper industry
- Discharged untreated in the aquatic environment (until 70's in Sweden)
- Formation of 2 types of sediments:
 - Fiberbank sediment: Large banks of pure wood chips, cellulose fibers and timber
 - Fiber-rich sediments: Natural sediment mixed with fibers, often further away from the factories

A Swedish pulp mill discharge (Lantmäteriet 1958)

Contaminant levels in fiberbanks

- High amounts of Persistent Organic Pollutants: DDT, PCBs, HCB
- High amounts of metals and metalloids: Cd, Co, Cr, Cu, Hg, Ni, Pb, Zn, As
- High gas production: CH₄, CO₂, H₂S

Gas composition

THE POINT

- Released gas mainly composed of CH₄
- A large part of CO₂ and other gases
- Other gases :
 - H_2S between 0 400 ppm
 - N-gases

Lehoux et al., 2021

Methane emissions: Laboratory measurements and upscaling

Norrlin & Josefsson, 2017

GHG emissions from fiberbanks could be as high as 7% of Sweden's GHG release in 2019 Can drones be used to estimate the emissions in the field?

Can they also help identify contaminated sites?

Lehoux et al., 2021

Drone platform

DJI Matrice 300 RTK

Total weight : 8.6 kg 3 pairs of battery Flight length : ~ 3 x 25 min

System delivered by Sparv embedded Similar setup as in Gålfalk et al. 2021

Anemometer

Thermometer Air pressure Relative humidity Positioning system

Methane sensor

Aeris Mira Pico Laser gas sensor Sensitivity 0.84 ppb/s Accuracy ~5 ppb

Methodology Horizontal mapping

Objective: Find hotspots

Conditions: Low wind speed (<1 m/s)

Methodology Vertical flights

Objective: Observe methane distribution in space and calculate fluxes

Conditions: wind >2 m/s

$$F(CH_4) = \iint_{0}^{z} \int_{x_1}^{x_2} (X_{ij} - X_0) \rho_{air} M_{CH4} U_{ij} dx dz$$

 X_{ij} : CH₄ mixing ratio, ρ : Air density, M_{CH4} : Molar mass of CH₄ U: Wind speed perpendicular to the vertical fence.

Localisation of the study sites

Study site 1: Väja

- Active sulfate paper mill
- Site in activity since 1914
- Fiberbank covering approx. 70 000 m²
- Fiberbank thickness > 6 m

Horizontal mapping in Väja

Date : 18 May 2022 Air temperature : 12 °C Wind speed : 0-1 m/s

- Sulfite paper mill active between 1906 and 1966
- Extensive remediation on land has been done, but most of the fiberbanks are left in place.
- High concentrations of Hg

Golder Associates report, 2016

Horizontal mapping in Svanö

Date : 22 June 2022 Air temperature : 19 °C Wind speed : ~ 4 m/s

Fences in Svanö (30 min between each)

Comparison of three fences

Methane emissions were estimated using the mass balance method.

Emissions from the Svanö fiberbank averaged from the three flights:

13.1 kg CH_4 / day

Two horizontal mappings in Svanö

Date : 10 August 2022 Air temperature : 20 °C Wind speed : 1-2 m/s

- Measurements performed 9 h after an earthquake <10km away
- Magnitude 2.6

Conclusions

- Horizontal mapping at low wind speed conditions allows the detection of
 - \rightarrow ebullition events
 - \rightarrow "hotspots"
- Methane emissions from fiberbanks occur mainly through ebullition
 - \rightarrow challenging to obtain a representative map
 - \rightarrow several horizontal mapping flights are necessary.
- Using the mass balance method enables estimation of the total methane flux.
- Earthquakes and other disturbances may trigger higher methane release from fiberbanks.
- Fiberbanks need to be remediated to limit GHG release to the atmosphere.

Thank you for your attention !

