

Anna Wemming & Clara Neuschütz

SGU Sveriges geologiska undersökning

SedNet Conference 2023, Portugal

STATENS

INSTITUT

GEOTEKNISKA

Havs och Vatten myndigheten

- Background
- Aim with the survey
- Methods selection of areas and fieldwork
- Results examples and highlights
- Summary
- Reports

Background - The situation in Sweden

Long history of industrial activities, often concentrated near running waters and the coastline

- Forest industry/papermills, pulp fiber
- Manufacturing industry, steel industry, refineries etc.
- 20 000 firefighting drill sites
- Power plant dams
- Harbors and leisure boat harbors

Background - Surface water bodies in Sweden

Type of water	Number
Coastal water	654
Lakes	7 453
Running water	15 688
Sum (excl open sea water)	23 795

Background – Governmental assignment

- Remediation of contaminated areas in the last decades – focus on land areas
- Knowledge gaps on the situation in sediments
- Governmental assignment 2019 to 5 Swedish authorities:
 - to improve the knowledge on how to manage contaminated sediments
- Among the activities:
 - investigate sediments and develop guidelines

Aim of the field survey

- Increase the knowledge about pollutants in sediments in Sweden, related to different types of:
 - recipients
 - impact sources
- Contribute to a:
 - national overview
 - knowledge basis for future inventory, risk classification and remedial work
 - further source tracking

Field survey – Selection of survey areas

- Based on identification of significant pressures from point sources of pollution ⇒ 3000 surface waters
- Based on types of water and point sources ⇒ 340 surface waters
- Collaboration with County Administrative boards
 ⇒ 72 surface waters (32 lakes + 24 streams + 16 coastal areas)
- Evenly distributed (by number) in 21 counties

Field survey – Fieldwork and analysis

- Hydroacoustic measurements
 - Characterizing the bottom for sampling
 - Single-beam sonar (lakes & streams)
 - Multibeam sonar (coastal areas, fiber banks & dams)
- Sampling of sediment
 - Core sampler & box-corer
 - Surface (0-5 cm) & deeper (15-20 cm) sediment layers
 - >300 samples
- Analysis
 - Chemical analysis
 - "Basic package" of physical & chemical
 - Additional substances depending on point source industries
 - >300 substances
 - Toxicity test
 - CALUX®
 - Cellular response to dioxins, PAH and estrogen-like substances

Photo: NIR

Results – commonly measured substances

Metals

- ∑ Cd, Hg, Ni, Pb, As, Cr, Cu, U & Zn
- 80 10,000 mg/kg (dw)
- Highest concentrations
 - Mines
 - Steel industries

Dioxins (PCDD/F)

- Additional analysis based on pressure
- 0,04 14 μg/kg (dw)
- Highest concentrations
 - Pulp & paper industries
 - Textile industries
 - Steel industries

Results – rarely measured substances

PFAS₃₅

- Additional analysis based on pressure
- 0,053 22 μg/kg (dw)
 - PFOS most frequently detected
 - PFBS highest concentration
- Highest concentration
 - Pulp & paper industries
 - Waste management & landfills
 - Fire fighting

Pharmaceuticals

- Additional analysis in WWTP recipients
 - 40 pharmaceuticals
- 0,18 89 μg/kg (dw)
 - Citalopram most frequently detected
 - Paracetamol highest concentration

Results – Toxicity tests

- CALUX®
 - Chemical Activated LUciferase gene eXpression)
 - Cell-based in vitro-test
- Responses to different substances
 - Dioxins: DR-CALUX
 - PAH: PAH-CALUX
 - Estrogens: ER-CALUX

Results – Toxicity test vs chemical analysis

Summary – Field survey

- Overview of contaminants in sediment and knowledge about methodology and choice of parameters
- Hydroacoustic measurements are essential to understand the conditions at each location
- Site specific high levels of historical contaminants such as metals and dioxins, and widespread occurrence of PFAS and pharmaceuticals
- Toxicity tests can be a useful complement to chemical analysis to interpret the effects on biota of the total load of contaminants

Published reports – Field investigations

Field reports available at <u>renasediment.se</u> (in Swedish with summary in English):

Additional reports – PFAS and screening

Sediment was collected to contribute to 2 other studies:

- Screening of per- and polyfluoroalkyl substances (PFAS) in sediment and water close to paper industries
- Non-target screening of emerging contaminants and their transformation products in marine biota and sediment samples from the Baltic Sea

Acknowledgements to:

Havs och Vatten myndigheten