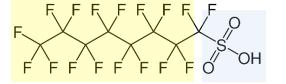
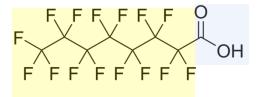


Ecotoxicological assessment of river sediments downstream of a firefighter training site

Rébecca Beauvais,
Carmen Casado-Martinez,
Benoît J.D. Ferrari



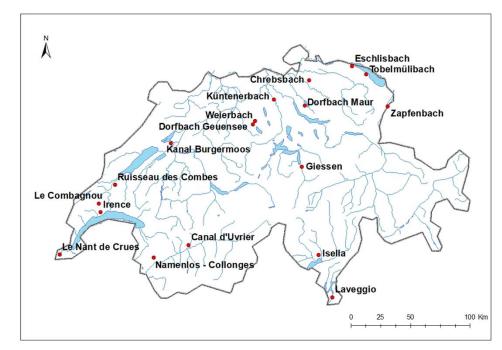
Most famous use - firefighting foams → Environmental impact


PFAS - forever chemicals

- Chemicals used in industry and consumer products since the 1940s
- According to OECD, include more than 3000 substances and more than 4700 CAS numbers related to PFAS
- Specific properties
 - High persistence
 - High mobility in water
 - → widespread and long-lasting contamination
- Most common
 - PFOS

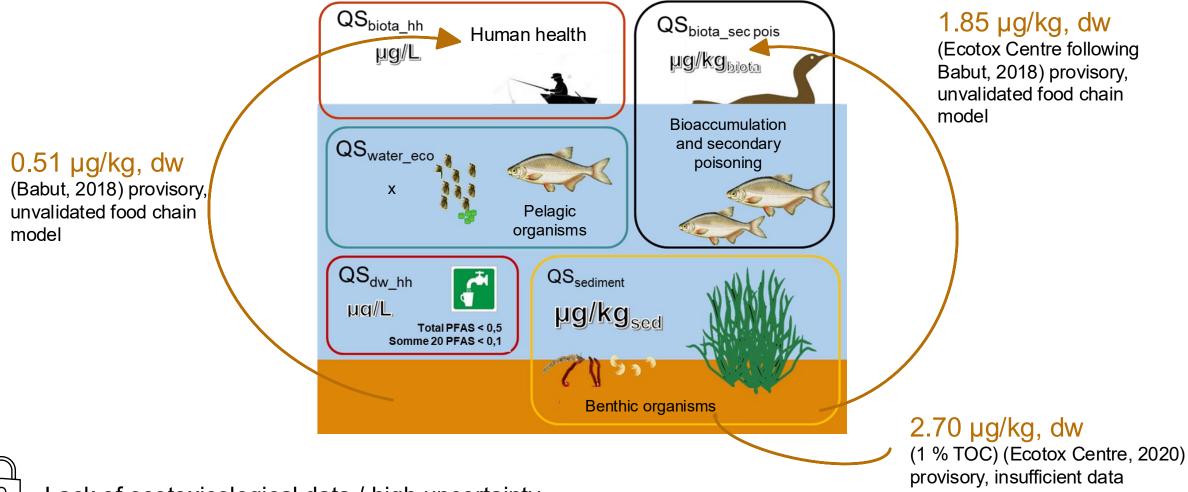
Fluorinated carbon chains (hydrophobic)

PFOA


Functional group (hydrophilic)

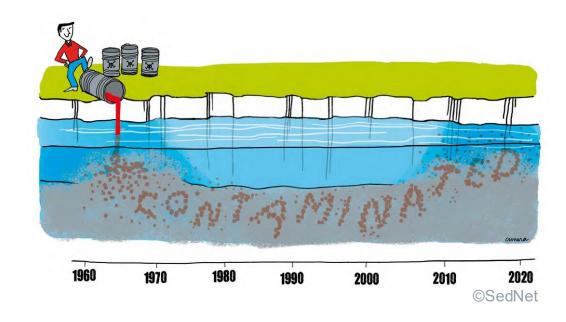
PFAS in Swiss sediments

- PFOS in the first list of 20 priority substances, as indicator of a PFAS contamination (Casado-Martinez et al., 2018)
- Campaign 2018 18 streams, median values [PFOS] (µg/kg, dw) (Casado-Martinez et al., 2024)
 - 63 μm 0.61 (max 20.20, urban aeras)
 - 2 mm 0.11 (max. 2.26, urban aeras)
- Estimation of the anthropogenic background concentration (ABC) for PFOS (µg/kg, dw) (Casado-Martinez et al., 2021)
 - 63 µm 0.68
 - 2 mm 0.32
 - → Realistic objectives for sediment managment
- Other PFAS measured
 - Long chain PFDA, PFHxS and PFOA
 - Short chain PFHxA and PFPeA



HPLC-MS/MS @ IRSA (IT): PFHxA, PFHpA, PFHxS, PFOA, PFOS (br,n), PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFTeDA, et FOSA (LOD: 0.001 - 0.020 μg/kg, dw)

PFOS - Environmental quality standards



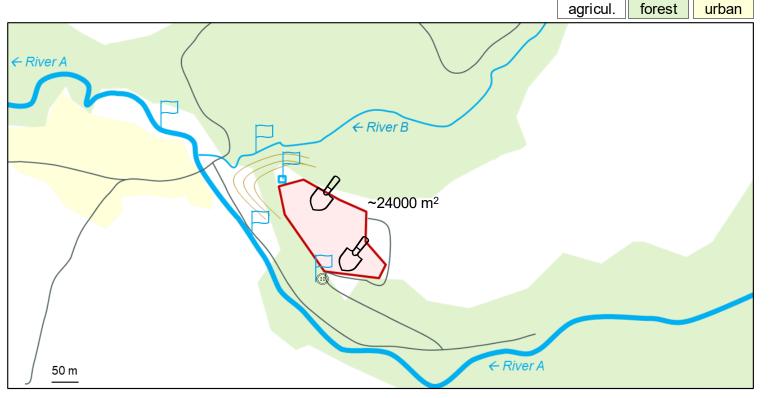
PFAS hazard in sediments

- Sediments: source and sink of PFAS
- Bioavailability and toxicity to benthic organisms
- Enter aquatic food webs → biomagnification in top predators
- Remobilization potential (release to water)
 - pH change, oxidoreduction state
 - perturbation through dredging, floodings

Case study:

Ecotoxicological assessment of river sediments downstream of a firefighting training site

Case study


- Firefighter training site constructed in the 80s use of different types of firefighting foams
- The use of firefighting foams can lead to the dispersion of PFAS into the environment (soil, water)
- Registered as polluted site → cantonal authority asks for investigation

Soil

2 soil sampling sites Σ 9 PFAS = 6 / 41 μ g/kg, dw

Leachates Σ 9 PFAS = 228 / 679 ng/L

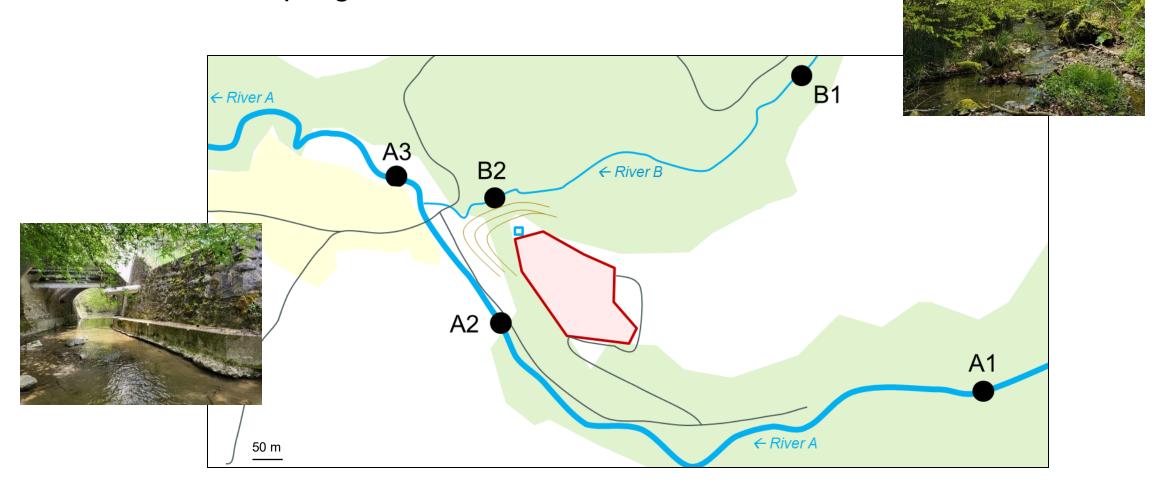
→ Remediation values exceeded (OSol ordinance)

Water

∑PFAS

retention tank 159 ng/L, drain 539 ng/L

No PFAS in River A


87 ng/L (18 - 30 ng/L) (PFHxA, PFHxS, PFOA, PFOS) in River B

No Swiss guideline values EQS-annual average 0.65 ng/L

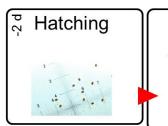
Material and methods

Sediment sampling sites

Material and methods

- 1. Collection of fine sediments according to the Ecotox Center guidelines (composite samples sieved on-site to 2 mm).
 - 2 in river A, 2 in river B, 1 after their confluence in river A
 - chemical analyses (20 PFAS substances# ("European list", private laboratory), total organic carbon content, grainsize distribution
 - PFAS risk assessment: comparison of concentrations with available sediment quality criteria

Casado et al., 2022


- 2. Bioassay with the epibenthic crustacean *Heterocypris incongruens*
 - Relevant benthic invertebrate, abundant in freshwater bodies, wide distribution
 - Commercial test kit (Micro BioTests Inc.), no culture needed
 - ISO standard 14371 (ISO, 2012) for freshwater sediment toxicity
 - survival and/or growth affected by exposure to sediments (5 samples)?

Control Sediment

Chemical analyses
 Sediment samples (µg/kg, dw)

	downstream					
	upstream	downstream	confluence	upstream	downstream	
Substance / Site	A1	A2	A3	B1	B2	

Results and discussion

Chemical analyses
 Sediment samples (µg/kg, dw)

	upstream	downstream	downstream confluence	upstream	downstream
Substance / Site	A1	A2	A3	B1	B2
PFOS					
PFDA					
PFOA		<loq< td=""><td>≺LOQ</td><td><loq< td=""><td></td></loq<></td></loq<>	≺LOQ	<loq< td=""><td></td></loq<>	
PFHxA	<loq< td=""><td></td><td></td><td><l0q< td=""><td></td></l0q<></td></loq<>			<l0q< td=""><td></td></l0q<>	
PFHxS	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td></td></l0q<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l0q< td=""><td></td></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""><td></td></l0q<></td></loq<>	<l0q< td=""><td></td></l0q<>	
PFPeA	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	

 Chemical analyses Sediment samples (µg/kg, dw)

	upstream	downstream	downstream confluence	upstream	downstream
Substance / Site	A1	A2	A3	B1	B2
PFOS	0.1	3.7	3.9	0.4	34.1
PFDA	0.1	0.4	0.7	0.3	0.5
PFOA	0.5	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.8</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.8</td></loq<></td></loq<>	<loq< td=""><td>0.8</td></loq<>	0.8
PFHxA	<loq< td=""><td>0.2</td><td>0.2</td><td><loq< td=""><td>0.2</td></loq<></td></loq<>	0.2	0.2	<loq< td=""><td>0.2</td></loq<>	0.2
PFHxS	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0.4</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.4</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.4</td></loq<></td></loq<>	<loq< td=""><td>0.4</td></loq<>	0.4
PFPeA	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0.2</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.2</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.2</td></loq<></td></loq<>	<loq< td=""><td>0.2</td></loq<>	0.2
∑PFAS	0.7	4.3	4.8	0.7	36.2
		× 6			× 50 !!

- ✓ Upstream ABC exceeded
- ✓ Impact of the polluted site
- ✓ PFAS are present in River A

blanks <0.1-1.0 µg/kg, dw ABC $0.32 \mu g/kg$, dw

Results and discussion

Risk assessment

PFOS - provisory SQC, different protection objectives

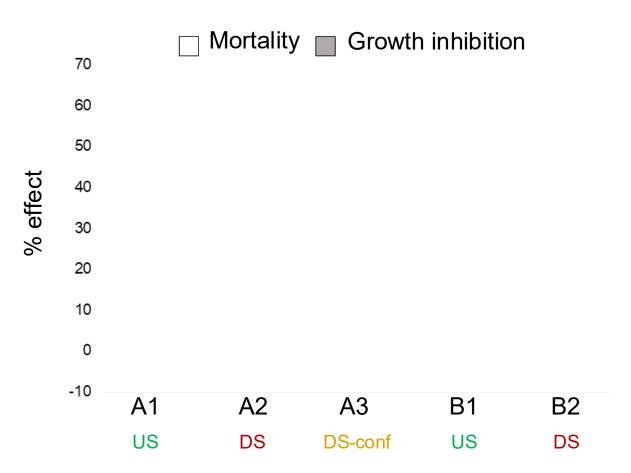
- 2.7 µg/kg, dw (1% COT)
- 1.85 µg/kg, dw (sec. poisoning)

	US	DS	DS-conf	US	DS
Substance / Site	A1	A2	A3	B1	B2
RQ - PFOS	0.01			0.07	
RQ - PFOS sec. p.	0.05			0.22	
RQ - ∑PFAS	0.09	0.33	0.64	0.12	6.27
RQ - ∑PFAS sec. p.	0.38	2.24	2.59	0.38	19.6

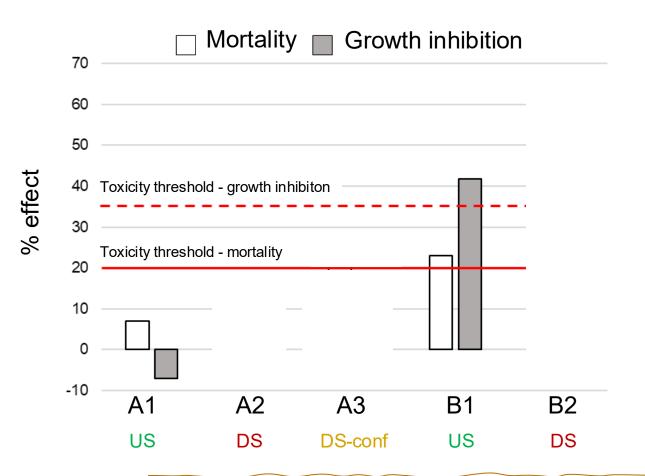
RQ, risk quotient

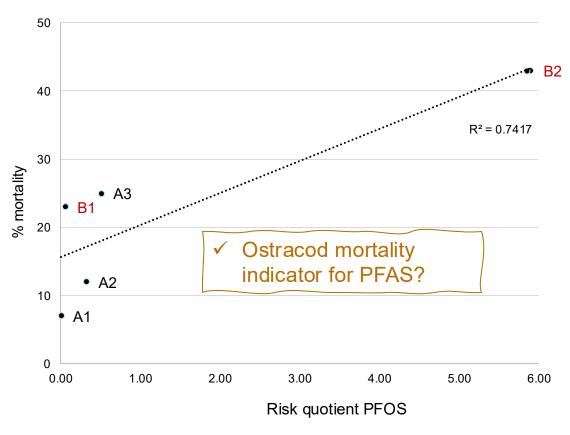
Sediment quality assessment system based on SQC comparison.

(Classification	Numerical evaluation		Class definition (RQ = MEC/SQC)	Meaning
	Very good	0.8 – 1	The measured concentration in the sediment is at least 10 times lower than the quality criterion (SQC)	RQ < 0.1	SQC met
	Good	0.6 - <0.8	The measured concentration in the sediment is between 1 and 10 times lower than the quality criterion (SQC)	0.1 ≤ RQ < 1	ogo mei
	Moderate	0.4 - <0.6	The measured concentration in the sediment is lower than two times the quality criterion (SQC)	1 ≤ RQ < 2	
	Unsatisfactory	0.2 - <0.4	The measured concentration in the sediment is lower than 10 times the quality criterion (SQC)	2 ≤ RQ < 10	SQC exceeded
	Poor	0 - <0.2	The measured concentration is equal to or higher than 10 times the quality criterion (SQC)		


Casado et al., 2022

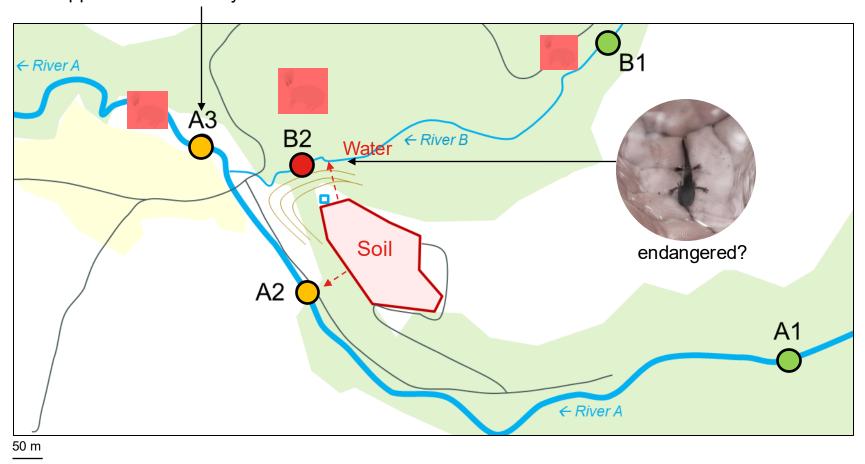
- ✓ Significant impact on sediments in River B, less significant impact in River A
- ✓ Provisional quality criteria, need of toxicity data on benthic organisms → perform ecotoxicological tests

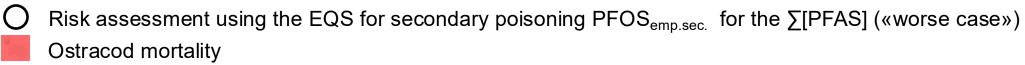

Bioassay with the ostracod H. incongruens



Results and discussion

Bioassay with the ostracod H. incongruens




[✓] Same gradient as for [PFAS]: impact on benthic organisms at B2 but also impact upstream (sediment properties and/or chemical pressure already upstream - other than PFOS?)

Summary

Slight dilution of the toxicity in A compared to B but appearance of toxicity not seen before in A

Conclusions

- First study in Switzerland on PFAS contamination of sediments in connection with a firefighter training site.
- Both the risk assessment based on chemical analyses and the bioassay converge in showing an impact on sediment quality downstream of the firefighting training site.
 - Chemical analyses showed a significant difference between upstream and downstream, especially for the smallest watercourse.
 - Ostracod mortality showed a clear upstream-downstream response in both rivers, with the highest mortality was observed in the sediment with the highest concentration of PFOS (and Σ PFAS).
 - For B2, the risk assessment indicates a significant risk to benthic life downstream of the site and **risk of secondary poisoning** of aquatic fauna.
- Ostracod mortality sensitive for detecting effects related to the presence of PFAS in complex sediment samples?
- Follow-up project with the support of the authority
 How far spreads the contamination downstream
 Use of a biotestbattery
 Investigations on suspended particulate matter

Ecotoxicological assessment of river sediments downstream of a firefighter training site

Centre Suisse d'écotoxicologie appliquée

References

- Casado-Martinez et al., 2016. The sediment-contact test using the ostracod *Heterocypris incongruens*: Effect of fine sediments and determination of toxicity thresholds. Chemosphere 151, 220-4.
- Casado-Martinez et al., 2018. Prioritization of substances for national ambient monitoring of sediment in Switzerland. Environ Sci Pollut Res 25, 3127–3138.
- Casado-Martinez et al., 2021. Sediment quality assessment framework for per- and polyfluoroalkyl substances: Results from a preparatory study and regulatory implications. Integr Environ Assess Manag.
- Casado et al., 2022. Strategy for sediment quality assessment in Switzerland.
 Technical report prepared for the Federal Office of the Environment. Swiss Centre for Applied Ecotoxicology, Lausanne.
- Casado-Martinez et al., 2024. Évaluation de la qualité des sédiments. Application de la stratégie développée pour la Suisse dans 18 petits cours d'eau. Aqua & Gas, 104(7+8), 70-79.
- Ecotox Centre, 2020. SQC (EQS_{sed}) Proposal by the Ecotox Centre for: Perfluorooctane Sulfonate (PFOS) Lausanne (CH): Swiss Centre for Applied Ecotoxicology.
- Babut, 2018. Essai de transposition des NQE_{biote} en concentrations seuil pour les sédiments. Programme 2016/2018 – Thème « Risques liés à la contamination chimique des milieux aquatiques » - Action n° 45. Rapport final.

