Comparison of Freshwater Sediment Quality Guidelines (SQGs) for potentially toxic elements (PTEs): Historical Perspectives and Future Directions

Ahmedin Hiya, Jordán Győző, Zsófia Kovács, Katalin Dudás and The DSQ2 Team

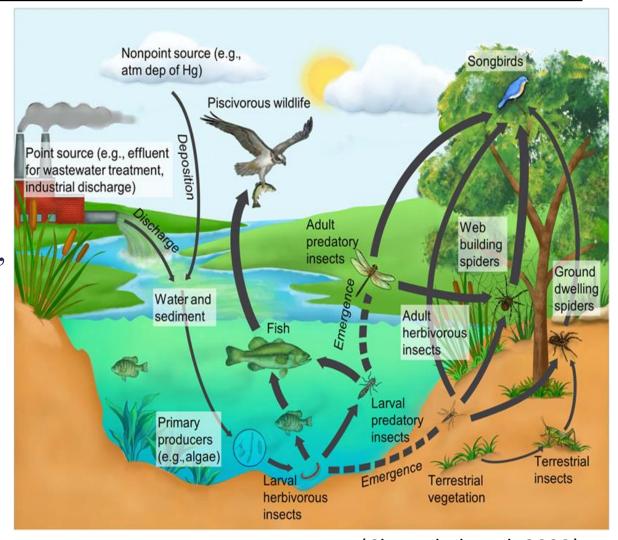
Eötvös Loránd University

Doctoral School of Environmental Sciences

Ahmedin Hiya, dinodiny6@gmail.com

14th International SedNet Conference 6 -10 October 2025, Madrid, SPAIN

Healthy Sediments

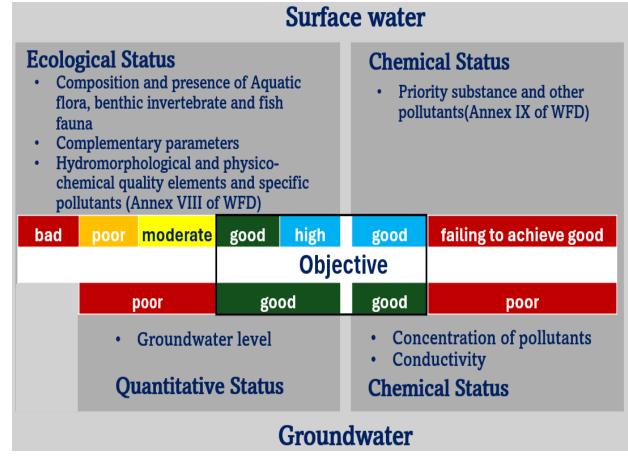

Outline

- > Introduction
- > Background
- > Freshwater SQGs: Historical Perspective and Classification of SQGs
- > Research Objective
- > Results
- > Summary
- > Future Directions of Freshwater SQGs
- > Conclusion/ Recommendation

Introduction

Importance of Freshwater Ecosystems

- rivers, lakes, wetlands, and streams
 - **✓** Abiotic and biotic factors
- are increasingly under threat from
 - ✓ **Natural sources -** weathering of rocks
 - ✓ **Anthropogenic** Industrial discharge, agricultural runoff, urbanization
 - ❖including potentially toxic elements (PTEs), into aquatic environments (Vörösmarty et al., 2010)
- Sediments- act as sink and sources of contaminants in aquatic systems.
 - ✓ Sediment Quality Assessment



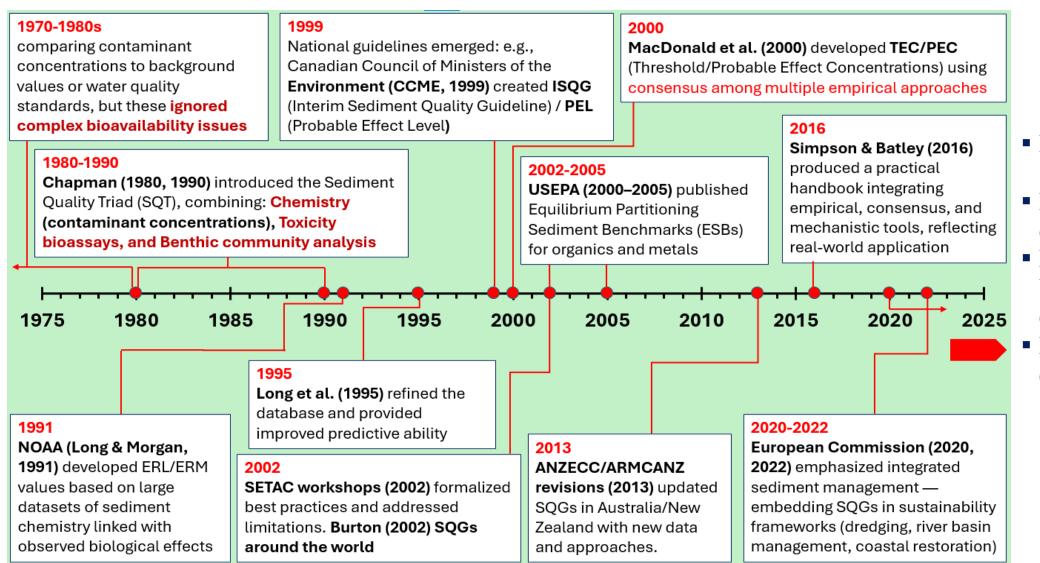
(Chumchal et al. 2022)

The Role of The EU Water Framework Directive (EU-WFD)

The **EU Water Framework Directive (WFD)** is aimed at protecting and improving **the chemical** and **ecological quality** of European water bodies. It establishes:

- Finding Environmental Quality Standards (EQS) for potential toxic substances
- Monitoring and assessment requirements surface water, groundwater, and sediments
- Transboundary cooperation mechanisms, requiring countries to collaborate on pollution reduction and sustainable water management
- Regulatory measures to control pollution sources, including industry, agriculture, and urban development

(Miccoli, Lombardo and Cicolani 2013)


Classification of Sediment quality guidelines (SQGs)

SQG Category	Approach	References/Developers							
Mechanistic		Di Toro, Mahony et al. (1991), Di Toro, Zarba et al. (1991)							
or	Equilibrium Partitioning Approach (EqPA)	Ankley et al. (1996), NYSDEC (1998),							
Theoretical		Di Toro and McGrath (2000)							
	Screening-Level Concentration Approach (SLCA)								
	✓ Lowest Effect Level - LEL	Persaud et al. (1993)							
	✓ Severe Effect Level - SEL	Von Stackelberg and Menzie (2002)							
	✓ Minimal Effect Threshold – MET	EC and MENVI Q (1992)							
	√ Toxic Effect Threshold – TET								
Empirical	Effect - Range - Approach (ERA)	Long et al. (1995)							
	√ Effects Range Low - ERL	USEPA (1996), Long and Morgan (1991)							
	✓ Effects Range Median - ERM								
	Effect- level- Approach (ELA)	MacDonald et al. (1996)							
	√ Threshold Effects Level - TEL	Smith et al. (1996), USEPA (1996)							
	✓ Probable Effects Level - PEL								
	Apparent-Effects - Threshold - Approach (AETA)	Barrick et al. (1988)							
	✓ Apparent Effect Threshold - AET	Ginn and Pastorok (1992) , Cubbage et al. (1997)							
	Consensus-Based - Approach (CBA)	Swartz (1999) , MacDonald et al. (2000a, 2000b)							
	Logistic - Regression - Modeling - Approach (LRMA)	Field et al. (1999, 2002) (MacDonald et al., 2000)							

SQGs - based on their derivation approach:

- ✓ Theoretical or
 Mechanistic Approach
 - the effect of sediment
 organic carbon or
 sulfides on the
 equilibrium partitioning
 of contaminants
 (Pavlou 1987, Di Toro
 et al., 1991 and 1999)
- ✓ The Empirical
 Approach based on statistical analysis of large databases of matched sediment chemistry and toxicity data

Schematic Timelines of Historical Perspective of Freshwater SQGs

- Early period (pre-1990s)
- Empirical guideline era (1990s)
- Mechanistic / bioavailability era (2000s onward)
- Modern guidance (2010s- present)

1999 1970-1980s 2000 comparing contaminant National guidelines emerged: e.g., MacDonald et al. (2000) developed TEC/PEC concentrations to background Canadian Council of Ministers of the (Threshold/Probable Effect Concentrations) using values or water quality Environment (CCME, 1999) created ISQG consensus among multiple empirical approaches standards, but these ignored (Interim Sediment Quality Guideline) / PEL complex bioavailability issues (Probable Effect Level) 2016 Simpson & Batley (2016) 1980-1990 produced a practical 2002-2005 Chapman (1980, 1990) introduced the Sediment handbook integrating **USEPA (2000–2005)** published Quality Triad (SQT), combining: Chemistry empirical, consensus, and Equilibrium Partitioning (contaminant concentrations), Toxicity mechanistic tools, reflecting Sediment Benchmarks (ESBs) bioassays, and Benthic community analysis real-world application for organics and metals Modern guidance 2010s Early period (pre-1990s) M/B era (2000s) EG era (1990s) 1990 2010 2025 1975 1980 1985 1995 2000 2005 2015 2020 1995 Long et al. (1995) refined the database and provided 1991 2020-2022 improved predictive ability NOAA (Long & Morgan, 2013 **European Commission (2020,** 1991) developed ERL/ERM 2002 2022) emphasized integrated ANZECC/ARMCANZ values based on large sediment management -SETAC workshops (2002) formalized revisions (2013) updated embedding SQGs in sustainability datasets of sediment best practices and addressed SQGs in Australia/New chemistry linked with frameworks (dredging, river basin limitations. Burton (2002) SQGs Zealand with new data observed biological effects around the world management, coastal restoration) and approaches.

Research Objectives

The main objectives are:

- ✓ To undertake a comprehensive comparison of existing Freshwater Sediment Quality Guidelines (SQGs) for potentially toxic elements (PTEs) such as: As, Cd, Cr, Cu, Hg, Pb, Ni, and Zn across various regions and countries
- ✓ To identify similarities and differences in the methodologies and thresholds applied across these regions
- ✓ To address the historical prospectives and to propose **recommendations** for improving SQGs and addressing unmet needs

(Photo by: Victor Mello ICPDR, 2021)

Results: Freshwater Sediment Quality Guidelines, FSQGs

Table 1. Freshwater Sediment Quality Guidelines, SQGs, i.e., threshold effect concentrations, TECs and probable effect concentrations, PECs, mg kg-1. DW (55)

SQGs around the world		sqccc !	sqccc	CN SQGCat	SQGCat	tC As	Cd	Cr	Cu	H	lg	Ni	Pb		Zn	ń	
Atlantic RBCA EQS -Freshwater sediment		ARBCA	1	High	2	17	3.5	90	197	0.4	186	75	91.	3	315	5	
Australian ISQG-High		AU_ISQGH	2	High	2	70	10	370	270	1	1	52	220	3	410	0	
Australian ISQG-Low	Illinois Extreme Elevated stream		m	IS_EEISS	25	High	2	28	20	60	200	0.3	2	1	100	300	<u></u>
Belgium Flanders-Consensus-1	sedimer	nts		15_66155		"igi"											
Belgium Flanders-Consensus-2		ighly Elevated stream		IS_HEISS	26	High	2	17	2	38	100	0.1	7	1	60	17	70
Belgium Flanders-LEL	sedimer							+	\vdash	\vdash		+			+		
Belgium Flanders-PEL	sedimer	Slightly Elevated stream ints		IS_SESS	27	Low	1	8	0.5	16	38	0.0	7	7	28	80	0
Belgium Flanders-SEL	Korea-P	EL		KR_PEL	28	High	2	44.7	1.87	224	228	0.6	7 8	7.5 1	154	117	70
Belgium Flanders-TEL	korea-TE			KR_TEL	29	Low	1	7	0.4	112	48	0.0	_		59	36	
Canada British Colombia-SQCSS				NL_TV	30	Low	1	29	0.8	100	35	0.3	_		85	14	
Canada British Colombia-SQCTS	Netherlands-QO			NL_QO	31 32	High	2 1	55 6	0.6	380 26	35 16	0.5	_	_	530 31	48 12	
Canada CCME-ISQG/TEL		USA Florida-LEL USA Florida-PEL		FL_LEL FL_PEL	33	Low High	2	17	3.5	90	197	0.49	_		91.3	31	
Canada CCME-PEL		USA Florida-FEL		FI SFI	34	High	2	33	10	110	110	2			250	82	
China Dianchi Lak-SQG	USA Flo	orida-TEL	UCAN	MacDonald 2000a-TEL-HA28		MD TEL LIAGO	46	1	1	11	0.50	00	00		00	07	07
China Poyang Lake-CCC	USA Mad Based-P	acDonald 2000a-Consen	isus USA Ma			MD_TEL_HA28		Low			0.59	36	28		20	37	_
China Poyang Lake-CMC		ncDonald 2000a-ERM	USA MacDonald 2000a-TET			MD_TET	47	High	2	17	3	100	86	1 '	61	170	
China Taihu Lake-TEL		ncDonald 2000a-ERM	USA NO	s. USA NOAA-LEL		NOAA_LEL	48	Low	1	6	0.6	26	16	0.2	16	31	
China Taihu Lake-PEL	Based-T			A NOAA-SEL		NOAA_SEL	49	High	2	33	10	110	110	2	75	250	
Final Flemish-SQG	USA MacDonald 2000a-ERL USA I			NOAA-PEC		NOAA_PEC	50	High	2	33	4.98	111	147	1.06	48.6	128	
German Elbe Class II	USA MacDonald 2000a-LEL USA N		USA N	A NOAA-PEL		NOAA_PEL	51	High	2	17	3.53	90	197	0.486	36	91.3	
German Elbe-Lower Limit	USA MacDonald 2000a-MET USA MacDonald 2000a-PEL USA		USA N	SA NOAA-TEC		NOAA_TEC	52	Low	1	9.79	9 0.99	43.4	31.6	0.18	22.7	35.8	
German Elbe-Upper limit			USA N	USA NOAA-TEL		NOAA_TEL	53	Low	1	5.9	0.596	37.3	35.7	0.174	+	35	
Hungarian-Geological media	USA MacDonald 2000a-PEL-		USA Pu	uget Sound-FSQS -CO	0	PGS_CO	54	Low	1	14	2.1	72	400	0.66	26	360	,
08/10/2025 Illinois Elevated stream sedimen	— USA MacDonald 2000a-SEL Sodition		SadNlat C	T Conference - HEALTHY S A Puget Sound-FSQS-CSLCC		PGS_CSLCC	55	High	2	120		88	1200	0.8		+	+

The Variations of the different Freshwater TECs SQGs for each potentially toxic Elements

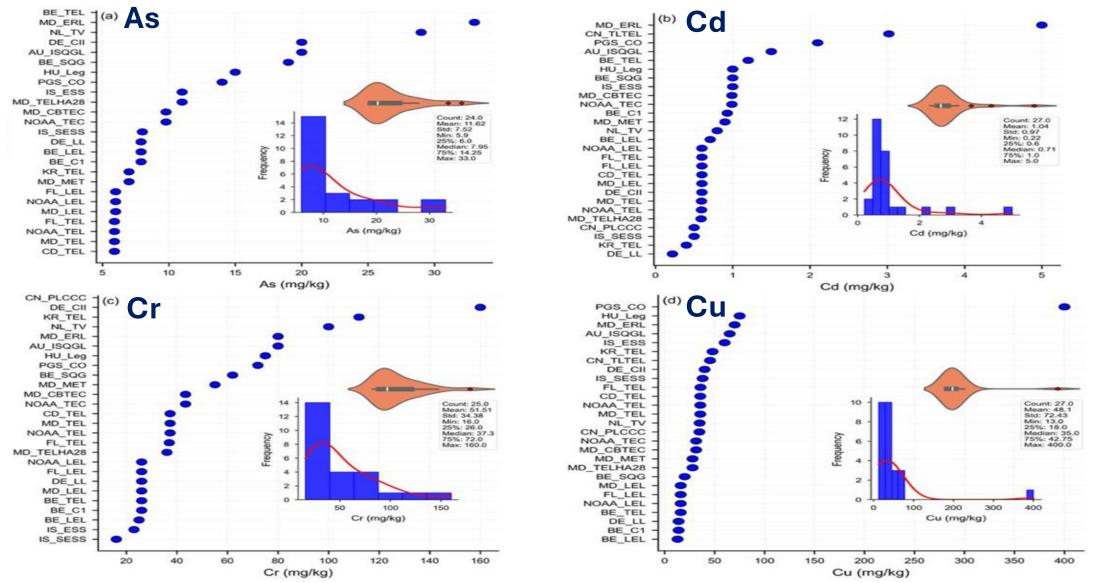
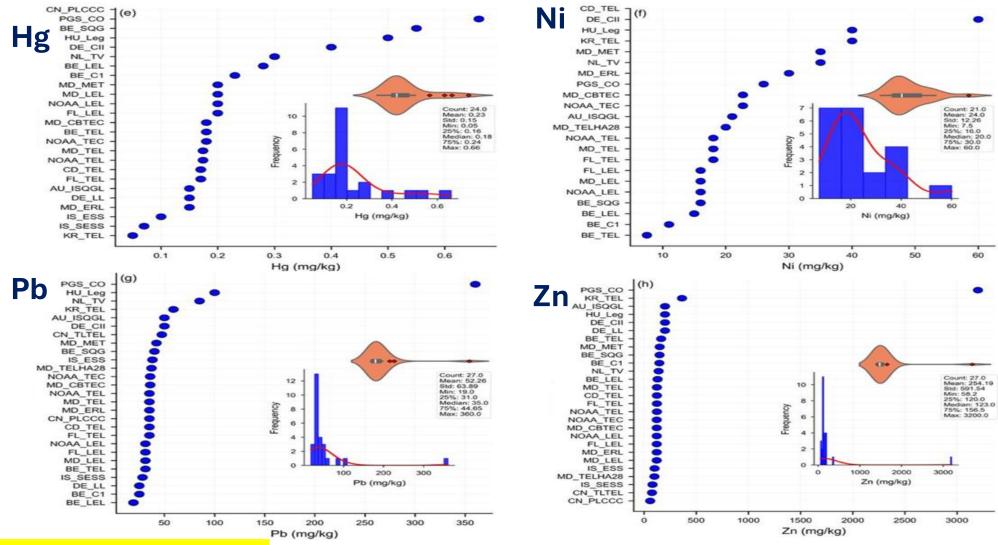



Figure 1. (a)-(h)The Box-and-Whisker plot overlaid scatter plot of TECs for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn

Contin,,,,

The (MAD/Median)* 100:

Contin,,,,

08/10/2025

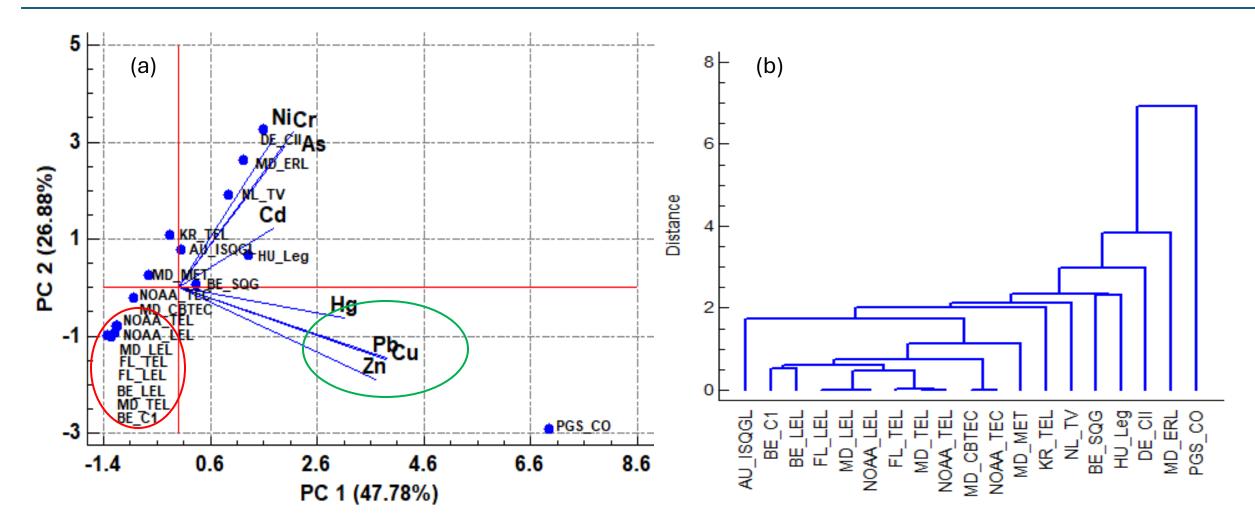


Figure 4. (a) and (b) are principal component analysis, PCA and cluster analysis, CA of the TECs SQGs, respectively

Summary

- ✓ Hg and Zn are with the lowest and the highest values in all the SQGs which corresponds the most toxic and least toxic elements, respectively
- ✓ Cu was found with the highest variability in the TECs SQGs followed by Cr and Cd whereas Pb is the least variable in the TECs
- ✓ In the PECs SQGs and TECs SQGs some guidelines donot have data for some elements this lack of SQGs data may lead to insufficient risk assessment procedure of these elements
- ✓ Further investigation in literature is required for each Freshwater SQGs

Future Directions of Freshwater SQGs

Global harmonization

- ✓ Many developing regions lack SQGs. International cooperation (e.g., through UNEP, EU directives) is needed (Batley & Warne, 2017)
- ✓ Move toward **global baseline SQGs**, adaptable to regional contexts

Site-specific and adaptive SQGs

✓ Incorporate local sediment geochemistry, organic carbon, Acid volatile sulphides (AVS) and redox conditions (Burgess et al., 2013)

Integration with new scientific tools

✓ Passive samplers to measure bioavailable contaminant fractions

Better treatment of contaminant mixtures

✓ Development of SQGs that consider cumulative risks from metals + PAHs + PCBs together

Climate change context

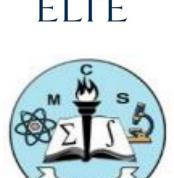
✓ Changing hydrology and temperature may alter contaminant mobilization and bioavailability. Future SQGs must be flexible under climate-driven shifts

Recommendations for Future Research and Action

- ☐ A comprehensive methodological review of Freshwater SQGs for Potentially toxic elements (PTEs) around the world is required to implement as a baseline for management strategies
- ☐ Enhanced Transboundary Collaboration and Data Sharing
 Strengthening transboundary cooperation. This can be achieved through:
 - ✓ Establishing joint monitoring programs to ensure consistent data collection and harmonization across countries (ICPDR, 2021).
 - ✓ Creating platforms for data sharing and knowledge exchange, such as the ICPDR's TransNational Monitoring Network (TNMN) (Sommerwerk et al., 2017).
 - ✓ Developing regional agreements that promote equitable responsibility and shared accountability for pollution control (Vuković et al., 2020).

Acknowledgments

✓ The DanubeSediment_Q2 Project (DRP0200029), an Interreg Danube Region Programme project cofunded by the European Union


- ✓ Stipendium Hungaricum Scholarship for supporting my Ph.D. studies
- ✓ Doctoral School of Environmental Sciences and Doctoral School of Earth Sciences

✓ The government of the State of Eritrea through Mai-Nefhi College of Sciences for supporting my Ph.D. studies

Thank You For Your Attention!!

Summary of the different derivation methods of Freshwater SQGs

Methodology		Approach	Citation				
(Canada, USA) – TEL/ PEL		Empirical approach based on statistical analysis of field data	(MacDonald et al., 2000) (Jin et al., 2021)				
(Norway & Netherlands) -		Hybrid approach combining field data	,				
f-SSD Approach, NL_TV, & NL_QO		and species sensitivity distributions	(Bjørgesæter et al., 2008)				
(Korea) - TEL, PEL, AET		Based on local sediment toxicity data	(Jin et al., 2021)				
(USA & Canada) –	✓	Based on sediment chemistry and	(MacDonald et al., 2000)				
MD_CBTEC/ PEC		sediment toxicity data	(Jin et al., 2021)				
CDBC_SQCSS/ CTS			(Ingersoll et al., 2001)				
(Belgium- Flanders) – BE_C1 ,BE_C2,		Based on ecological effects and	(Deckere et al., 2011)				
LEL/ SEL, & TEL/ PEL		ecotoxicological endpoints					
(Australia/ New Zealand) – ISQGL/ H		Adapted NOAA guidelines with local	(Maher, 2001)				
		validation focusing on bioavailability and toxicity testing	(Birch & Taylor, 2002)				
(USA) - NOAA_LEL/ SEL	✓	Based on sediment chemistry as well	(Hoke et al., 1995)				
NOAA_TEL/ PEL NOAA_TEC/ PEC PGS_CO/ CSLCC		as ecological effects and	(Burton, 2002)				
		ecotoxicological endpoints EqP and empirical data with local	(Zhenke, 2005)				
		validation					