

Optimization of Sediment Restoration Through Combined Remedy and Risk Management

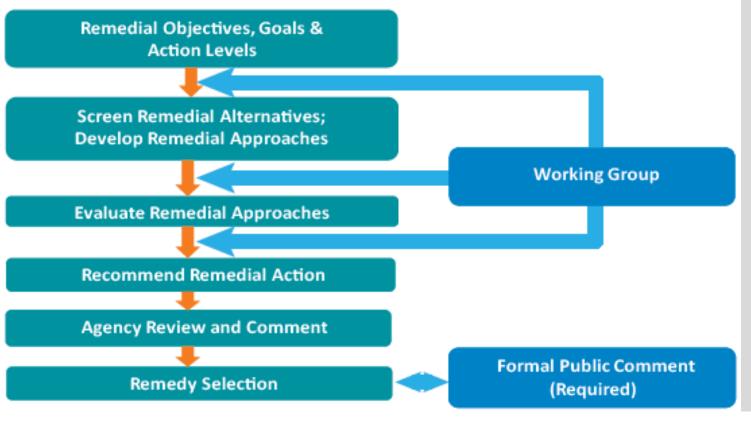
Senda Ozkan, Steve McGee, Keir Craigie, Gary Braun, Chris Moody (Tetra Tech, Inc.)

14th International SedNet Conference Healthy Sediments 6-10 October 2025 | Madrid, Spain

Introduction

- Multi-component remedy optimizes the process to achieve the remedial goal and sustainable management of impacted sediments.
- Success of sediment remediation projects can be maximized by add-on value of habitat restoration, nature–based solution to restore health of sediments.
- A collaborative approach to gain the support of public, environmental agencies and other stakeholders is the key for sustainable sediment management.

Site characteristics


- Creek and tidally influenced estuary
- Creek discharging into the cove
- Industrial and residential area
- Partial navigation channel
- Recreational use (boating, swimming, fishing)
- 3-meter water depth in the cove
- Silty sand sediment
- Organic carbon ~ 1 5.5%
- PCB contamination
 - <1 3,600 mg/kg PCBs

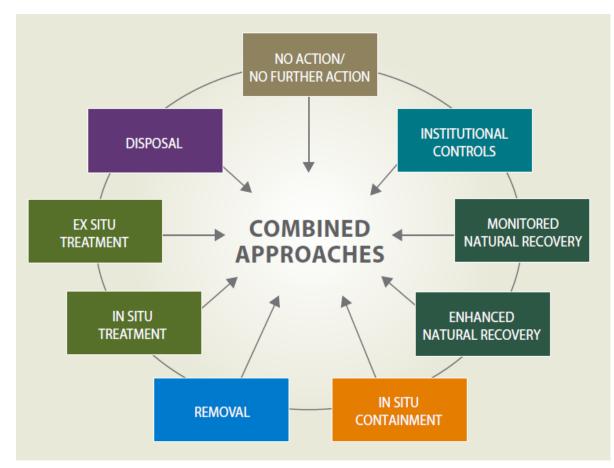
Remedy selection

- Community workshops
- Meeting with agencies and stakeholders

Community Working Group Process

Public Information Session – Solicitation of Interested Parties

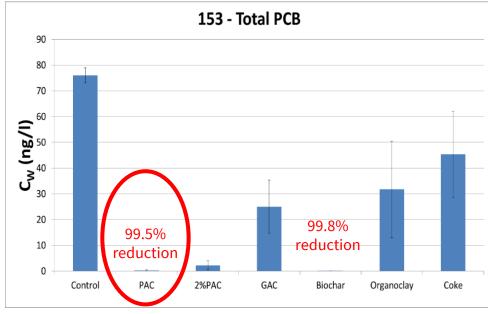
Community Working Group Sessions:

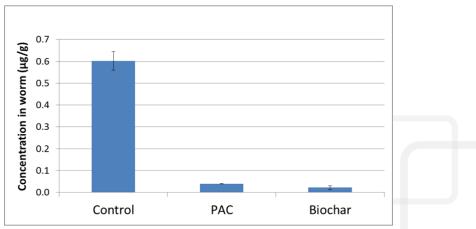

- Site Characterization and Risk Assessment Results
- 2. Feasibility Studies, Remedial Alternatives, and Considerations
- 3. Decision Making, Expressed Preferences, Informed Consent

Criterium Decision Plus(R)

- Multi-parameter Decision Analysis tool
- Evaluated the USEPA Feasibility
 Study Criteria and
 - Sustainability
 - Community Acceptance

Combined remedy

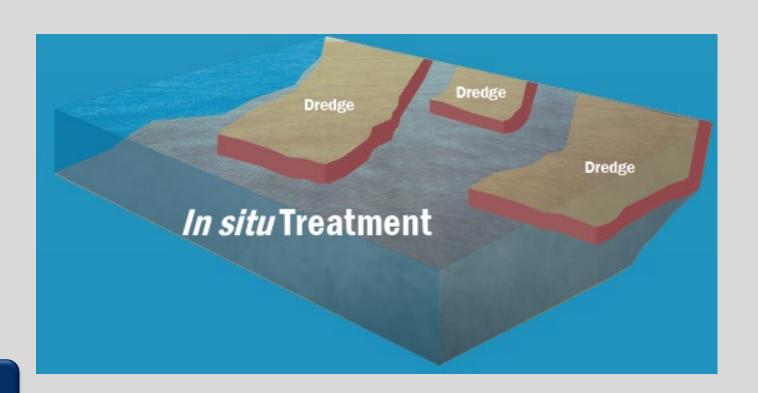

Combined remedy: Removal, residual management, restoration and in situ treatment



TETRA TECH

- Evaluation of sediments with approximately 1 –
 2.5 mg/kg total PCBs and 5 amendment materials
- Porewater reduction
 - Powder activated carbon (PAC) and biochar reductions 94.9 99.8%
 - Granular activated carbon (GAC) reductions 67 – 81.6%
 - Organoclay and coke reductions 36 58%
- Bioaccumulation tissue reduction
 - 92 96 % reduction in tissue concentrations for PAC
 - 96 % reduction in tissue concentrations for Biochar

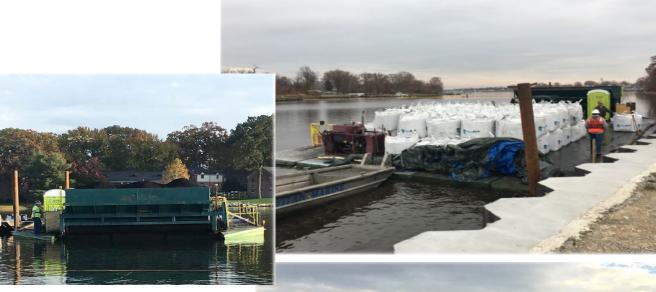
Remedial design



Combined remedy of dredging and in-situ treatment

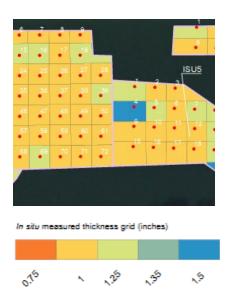
Completion of dredging for areas of higher PCB concentrations followed by application of a residuals management layer

Application of PAC for the in-situ treatment in areas with PCB contamination in the surface sediment between 0.7 mg/kg and 2.5 mg/kg

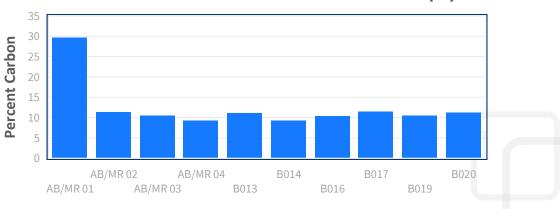

Approximately 1/3 of the area (2.4 ha) of contaminated sediment to be dredged and 2/3 of the area (5.7 acres) with in-situ treatment

In-situ treatment implementation

- 2,500 tons of AquaGate + PAC (10%)
- Cable-propelled barge spreader to place material
- Initial test runs to establish barge and spreader operation rates to achieve project goals of ~5% PAC
- Application challenge –
 consistent placement of an ~
 2.5 cm layer of the AquaGate + Placement Area 8
 PAC



Construction quality control


TETRA TECH

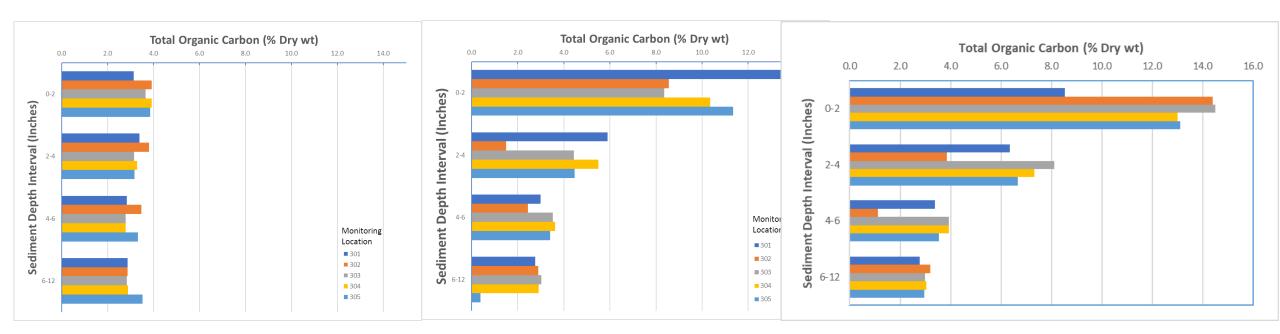
- Manufacturing quality control documentation verified material quality (PAC content)
- Multiple lines of evidence used to verify placement
 - Application rate calculated 445 tons/ha
 - Aggregate thickness measurements
 - Total organic carbon and black carbon analysis
 - Sample buckets collected for verification of quantity of PAC placed
- Bucket Collection Test Sample Results
 - Verification of PAC placement
 - Initial barge/spreader calibration
 - Full scale in-situ placement

Bucket Tests - Carbon in Recovered Material (%)

Collection Buckets

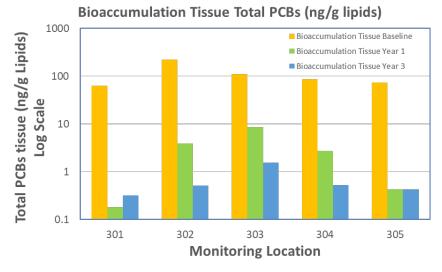
Post-remedy monitoring plan

- Repeat of baseline sampling approach – porewater sampling and bioaccumulation testing at same 5 locations
- Year 1, 3 and 5
- Criteria:
 - 70% reduction in tissue bioaccumulation concentrations
 - 80% reduction in porewater concentrations

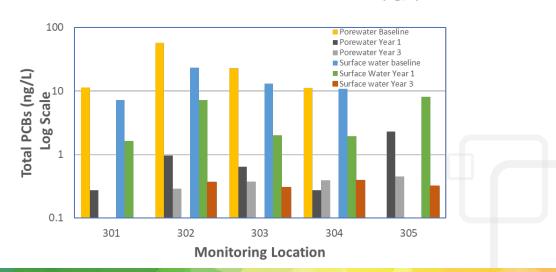


Monitoring years 1 and 3 – total organic carbon by sediment depth intervals

Baseline Year 1 Year 3



- Three cores collected from each monitoring location. Composite samples for each interval collected and analyzed for total organic carbon (TOC) and black carbon
- Year 1 results show presence of activated carbon and mixing to a depth of 4 inches based on increase in TOC above baseline
- Year 3 results continue to show the presence of activated carbon and continued mixing to deeper depths based on the increase in TOC above baseline and Year 1 results.



- 28-day bioaccumulation tissue
 - > 93 % reduction in total PCB tissue concentrations from baseline
- In-Situ porewater
 - > 96 % reduction in total PCB sediment porewater concentrations from baseline
- Surface water
 - > 65 % reduction in total PCB surface water concentrations from baseline

In Situ Porewater & Surface Water Total PCBs (ng/L)

TETRA TECH

- Reduction in bioavailability of PCBs from sediment as measured by worm tissue meet the objective of 70% within the 5-year target period.
 - Reduction in total PCB concentrations from Baseline monitoring of 95% and 98.7% at Year 1 and Year 3 respectively on a wet weight basis and 97.1% and 99.4% on a lipid basis.
- Reduction in bioavailability of PCBs from sediment as measured by sediment porewater meet the objective of 80% within the 5-year target period.
 - Sediment porewater reduction in total PCB concentrations from Baseline monitoring of 96.5% and 98.5% for the in-situ monitoring at Year 1 and Year 3 respectively and 96.9% and 99.5% for the exsitu monitoring.

Remediation of an urban creek and habitat restoration

- Public value boating, birding, fishing, water quality
- Restore and improve fish habitat
- Consider vegetated buffer for stormwater management
- Re-construct stream
- Restore wetlands
- Plant shoreline vegetation, tidal marsh fringe
- Re-establish submerged aquatic vegetation

Before remediation and restoration

Remediation construction

Reconstruction of creek

Revegetation

Restoration – year 1

Five-year monitoring of habitat restoration areas showed that functional goals of erosion protection, nutrient removal, and creating ecological diversity have been achieved.

Summary

- Combined remedies can optimize cleanup of impacted sediments while minimizing the impacts to existing habitat and the environment.
 - In-situ treatment of contaminated sediments is a sustainable risk management approach to restore the health of sediment if applicable to the site conditions.
- A well-designed habitat restoration is a nature-based solution to restore health of sediments by promoting natural recovery.

Thank You

