







# DanubeSediment\_Q2

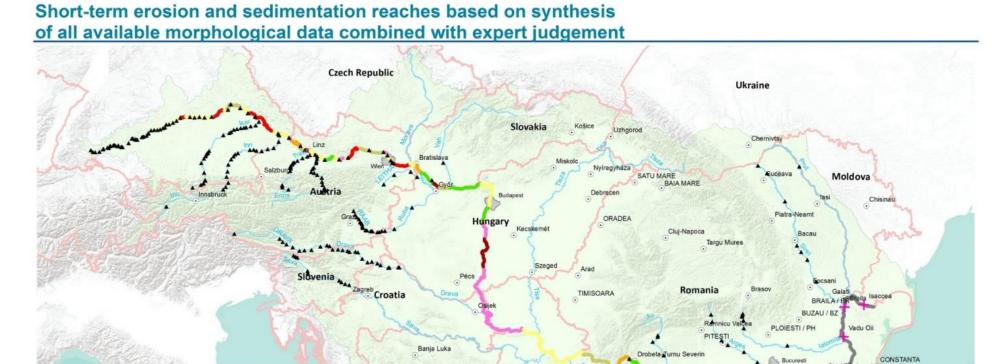
Sustainable, Integrated Transnational Sediment Quantity and Quality Management in the Danube River Basin

**SedNet Conference** 

Madrid, 16.10.2025

Presenter

H. Habersack, S. Baranya, V. Gabrian, G. Jordán, N. Cvijanović, P. Flödl, M. Haimann


#### Introduction

- In the last Danube Transnational Programme period, two very successful projects were realized related to sediments: DanubeSediment and SIMONA
- These projects showed that sediment management is a significant topic at the Danube River, but also highlight many open issues, challenges and needs.



#### **DanubeSediment**

Due to many sediment related impacts the sediment regime in the Danube River has changed.



DRBMP – Update 2021: Alteration of the sediment balance as a new sub-item under the existing Significant Water Management Issue "Hydromorphological alterations"

Sedimentation: 34 %



#### Vision

The ICPDR's basin-wide vision is a **balanced sediment regime** and an **undisturbed sediment continuity.** [...]

→ Reduction of suspended sediment input to Black Sea by about 60 %

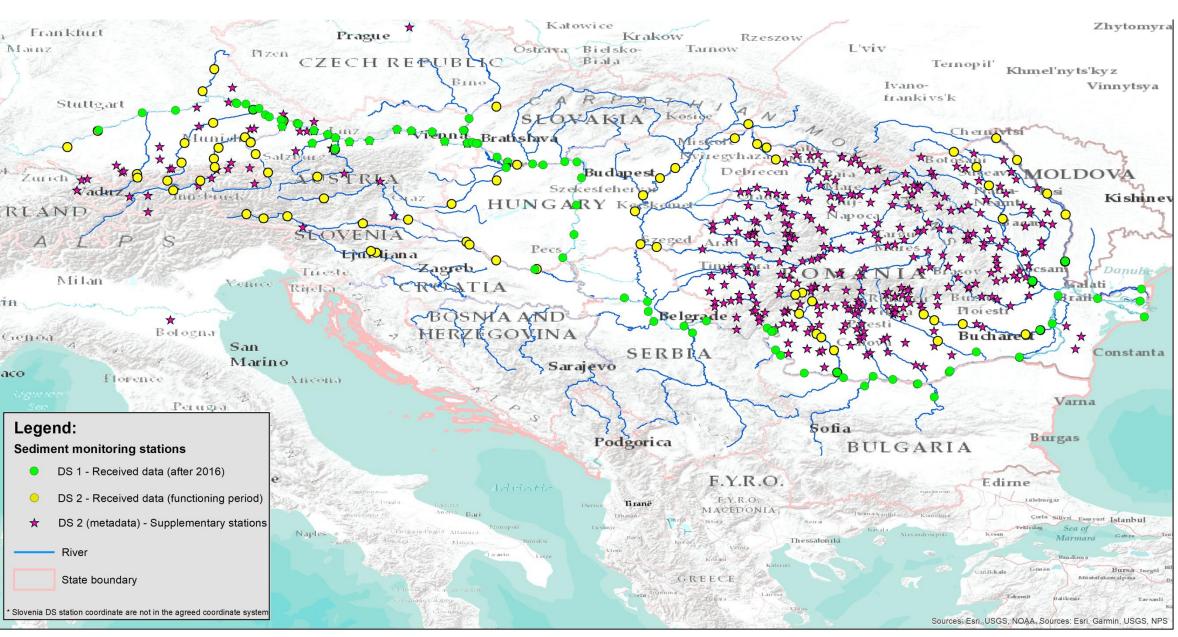


## DanubeSediment\_Q2

- The main objective is to improve sediment quantity and quality management in the Danube River Basin (DRB) to support the ecological conditions
- Specific Objectives:
  - Improved sediment monitoring, data management and evaluation methods in the Danube River Basin
  - Feasibility of practical solutions to address sediment alteration being co-created with stakeholders
  - Developed transboundary Integrated Sediment
     Management Plan (ISMP) for the Danube River Basin



- Project start: 01.01.2024
- Project end: 30.06.2026
- Project duration: 2,5 years
- 14 Project Partners
- 40 Associated Strategic Partners
- Total budget: 2,893,187.47 EUR
- Interreg Funds: 2,314,549.97 EUR






# **A1.1 Improve joint Danube sediment monitoring**

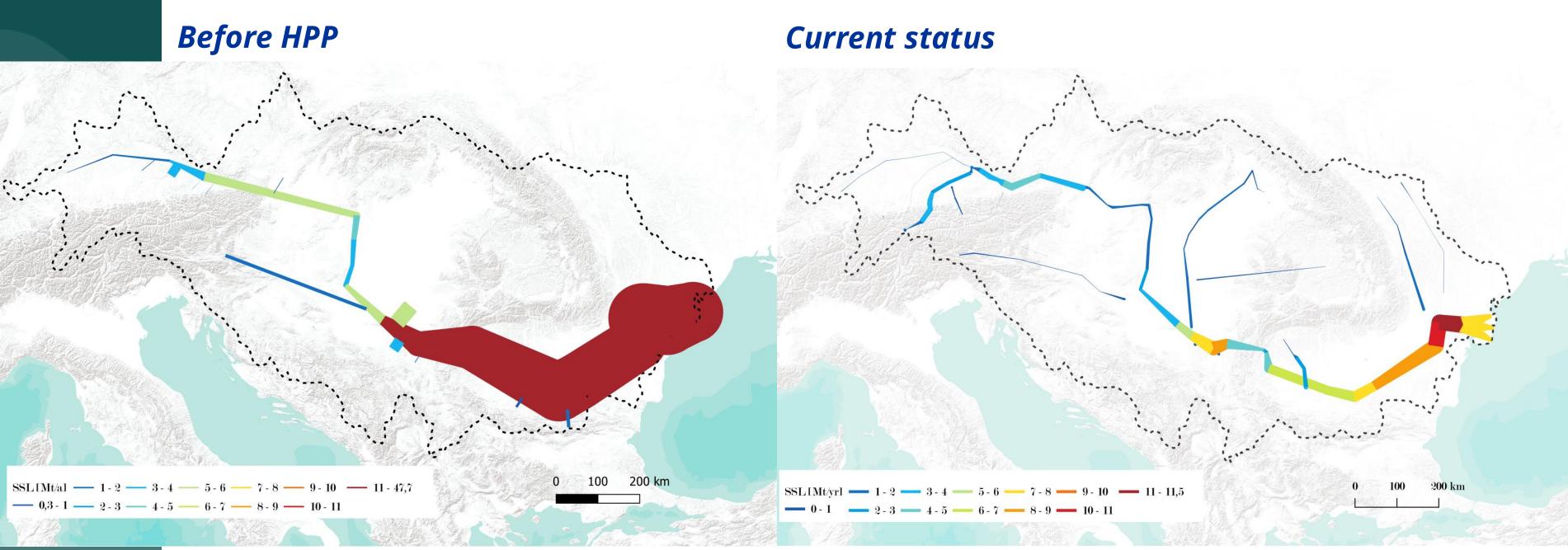
 New sediment data is collected (for period 2016-2023), from new sediment stations and from tributaries





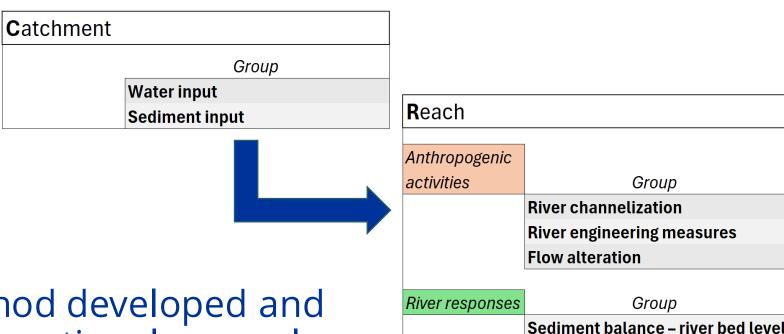
# **A1.1 Improve joint Danube sediment monitoring**

- New sediment data is collected (for period 2016-2023), from new sediment stations and from tributaries
- Sediment quality data, TNMN database
- 2 new sediment monitoring platforms (Danube+Dráva)







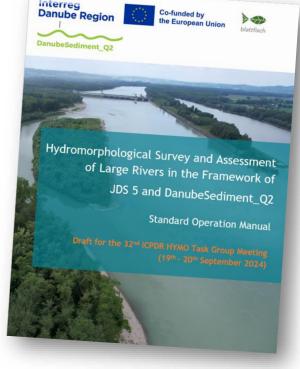


# A1.2 Advance Danube sediment budget analysis

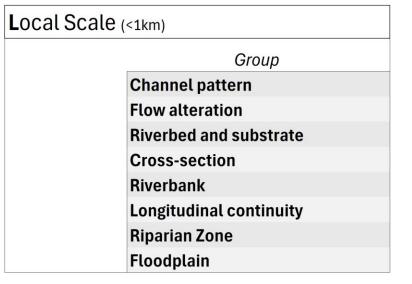
Updated sediment balance for 2023





A1.3 Develop an improved HYMO assessment method





Planform & floodplain

**Channel morphology** 

Vegetation

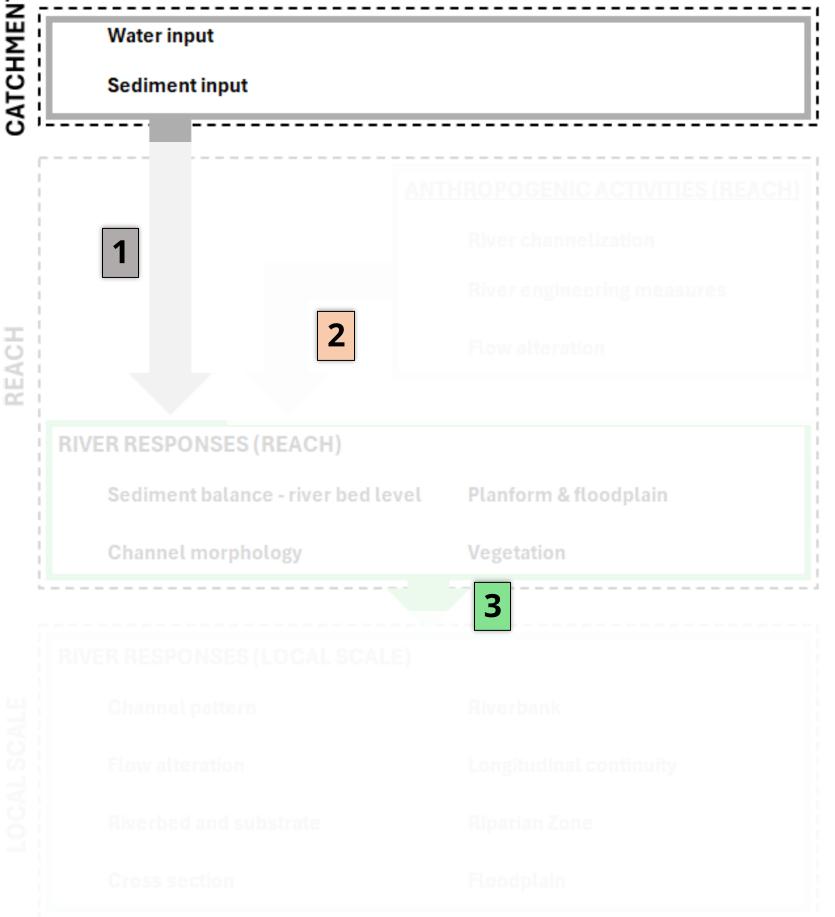
- Hymo assessment method developed and summarized in Draft operational manual :
  - 40 assessment parameters
  - hierarchical approach with 3 scales
  - Applied in JDS5: catchment and reach scale covered by DS\_Q2, local scale by national hymo experts (ICPDR)
- Two ways of assessment are possible:
  - Independent assessment of parameter groups
  - Process-hierarchical assessment







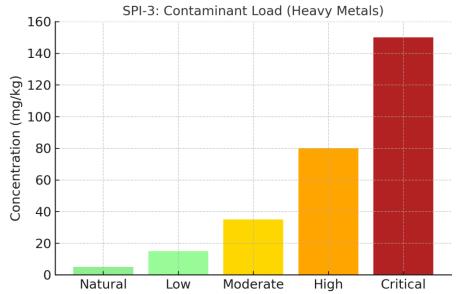
A1.3 Develop an improved HYMO assessment

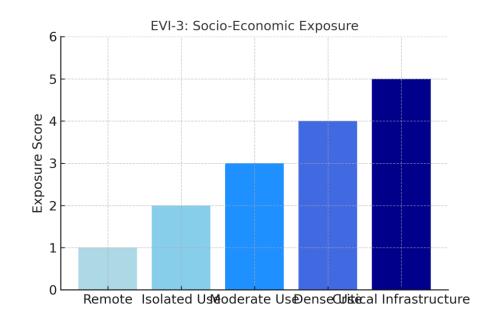

method

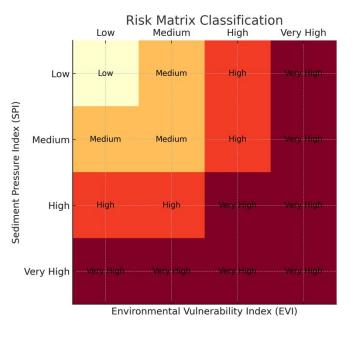
#### **Assessment**

→ "Hierarchical group scoring"

Calculation of hierarchical influence of <u>parameter groups</u> from:


- 1 Catchment on Reach
- 2 Reach on Reach
- Reach on Local Scale




# A1.4 Design and test a new risk analysis methodology

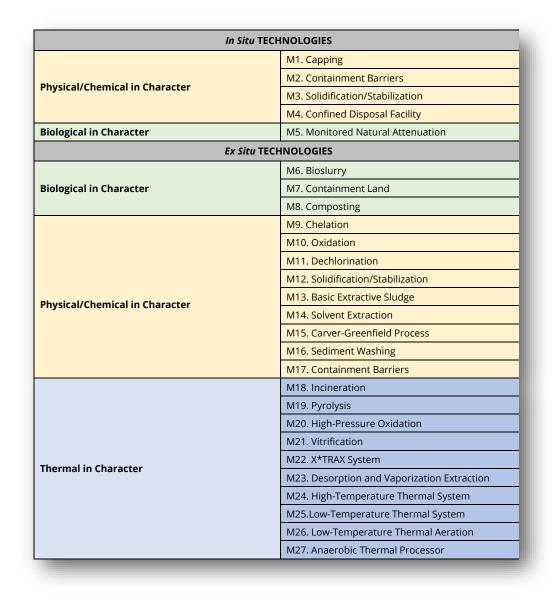
- Draft concept for the new Risk Assessment on Sediment Quantity and Quality:
  - Develop harmonized methodology for sediment risk.
  - Integrate ecological and socio-economic risks.
  - Support prioritization of ISMP measures.
  - Enable spatial risk classification across the basin.
  - Two axes: Sediment Pressure Index (SPI) & Environmental Vulnerability Index (EVI).
  - Matrix defines risk classes: Low, Medium, High, Very High.
  - Indicators normalized and aggregated, supports basin-wide comparability.












## **A2.1 Categorization of sediment management** measures

- Compendium of categorized sediment management measures
  - Including 77 potential management measures, 51 for sediment quantity and 26 for sediment quality





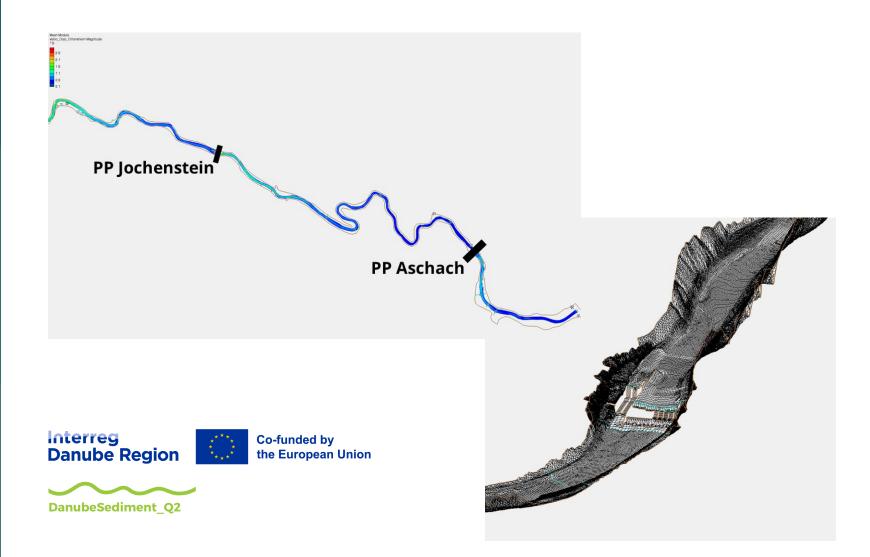


#### Measures in the catchment ▶ C1: Minimize urbanisation and construction of buildings on sloped terrain ▶ C2: Minimize anthropogenically caused excessive debris flow/mass movements/land slides C3: Improve / adjust land use and management ▶ C4: Reduce surface runoff by infiltration and retention ▶ C5: Reduce undesired (fine) sediment input ▶ C6: Controlled sediment transfer at barriers (improve sediment continuity) Measures in free-flowing sections Measures in reservoirs / impoundments ▶ R12: Enlarge morphological space of rivers ▶ R1: Minimize width of the impoundment/reservoir ▶ R13: River widening (artificial/self-forming) (by hydraulic structures) ▶ R14: River bank restoration ▶ R2: Sediment bypass (tunnel, channel) ▶ R15: Increase river length to reduce slope ▶ R3: Off-stream reservoirs ▶ R16: Reconnection of side-channels/enhance floodplain erosion ▶ R4: Sluicing ▶ R17: Opening or removal of flood dykes ▶ **R5:** Venting of turbidity currents ▶ R18: Relocation/set-back of flood dykes ▶ R6: Environmentally friendly flushing ▶ R19: Removal of natural near-river levees ▶ R7: Flood conditioned flushing ▶ R20: Restore wetlands ▶ R8: Optimize flushing/sluicing strategies for dams in series ▶ R21: Coarse particle feeding (granulometric bed improvement) ▶ R9: Prevent sedimentation by artificial turbulence ▶ R22: Break-up of bed armouring (artificial flood/mechanical) ▶ R10: Wet or dry dredging and reinsertion ▶ R23: Integrated dredging and feeding management ▶ R11: Bedload drift ▶ **R24:** Fairway shifting or narrowing R25: Minimize/stop commercial dredging Measures at the dam Measures in free-flowing sections ▶ L1: Minimize dam width ▶ L2: Minimize fixed weir sill height ▶ L15: Optimisation of river engineering structures to reduce sedi-▶ L3: Construct local sediment bypass ▶ L4: Modify weir fields to increase sediment continuity ▶ L16: Optimisation of river engineering structures to reduce erosion ▶ L5: Install large bottom outlets/gates for venting, sluicing or ▶ L17: Install bedload traps (as part of integrated dredging and feeding management) flushina ▶ L18: Remobilisation of consolidated gravel bars ▶ L6: Route sediments through turbines ▶ L19: Local bank protection ▶ L7: Pressure scouring ▶ L20: Modify/remove barriers (weirs/ramps) ▶ L8: Open ship locks for local remobilization ▶ L9: Apply local artificial turbulence ▶ L10: Local dredging at intake structures ▶ **L11:** Optimize operating rules ▶ L12: Innovative hydropower plants ▶ L13: Remove dam/weir



## A2.2 Assignment of potential measures to case study sites

- Multi-Criteria-Assessment-Tool developed
  - for the selection of possible measures


|                  | Environmental<br>30% | Social<br>15% | Technical<br>15% | Economic<br>15% | Regulatory<br>Compliance 25% |
|------------------|----------------------|---------------|------------------|-----------------|------------------------------|
| Very simple      | 0,3                  | 0,15          | 0,15             | 0,15            | 0,25                         |
| Simple           | 0,24                 | 0,12          | 0,12             | 0,12            | 0,2                          |
| Medium           | 0,18                 | 0,09          | 0,09             | 0,09            | 0,15                         |
| Complicated      | 0,12                 | 0,06          | 0,06             | 0,06            | 0,1                          |
| Very complicated | 0,06                 | 0,03          | 0,03             | 0,03            | 0,05                         |

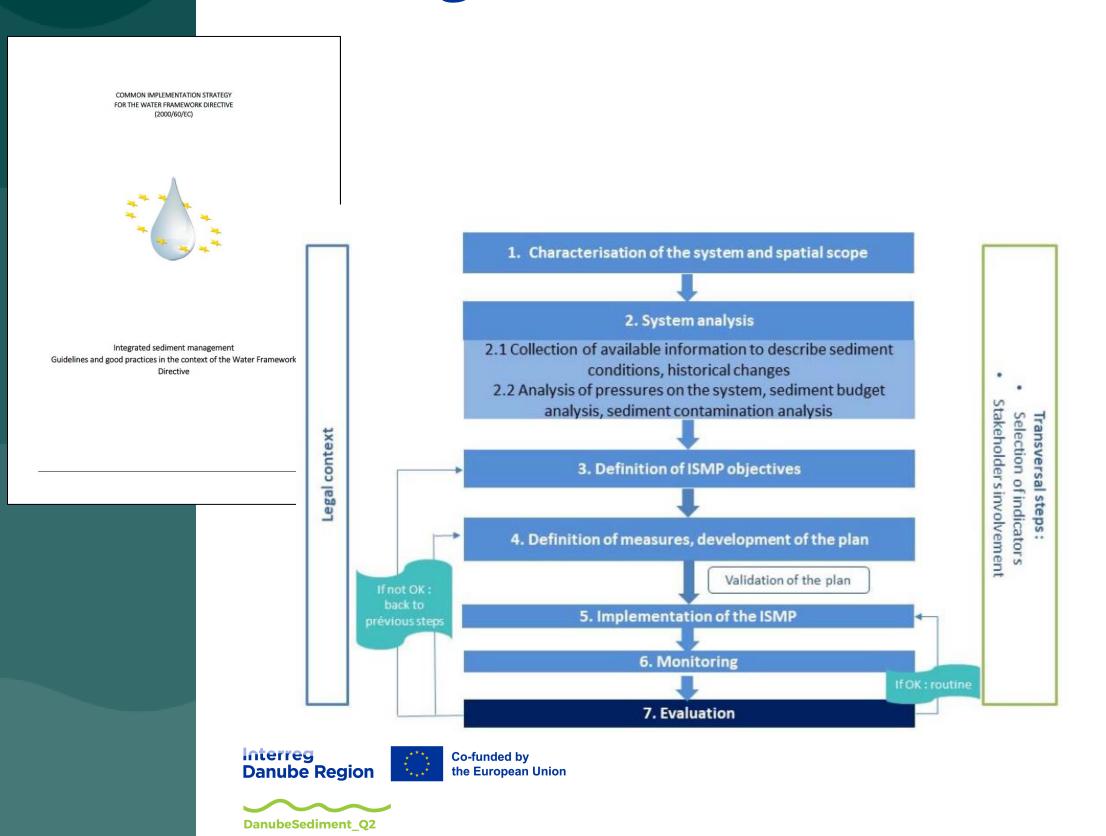
| Weight | Objective                | Sub-Objective                                                                                                                        | <b>Optional Sub-Objectives</b>                                                                                                           |
|--------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 30%    | Environmental            | • Environmental permit (EIA Report)                                                                                                  | Improvement / preservation of:                                                                                                           |
| 15%    | Social                   | <ul><li>Public Health and Safety</li><li>Aesthetic impact</li><li>Cultural and Historical significance</li></ul>                     | <ul> <li>Social acceptability</li> </ul>                                                                                                 |
| 15%    | Technical                | <ul> <li>Suitability of proposed measure for site</li> <li>Engineering analysis</li> <li>Adaptability</li> <li>Durability</li> </ul> | <ul> <li>Ability to solve the sediment problem</li> <li>Sustainability of the measure</li> <li>Minimize maintenance frequency</li> </ul> |
| 15%    | Economic                 | <ul><li>Cost-Benefit Analysis</li><li>Funding availability</li><li>Economic impact on the community</li></ul>                        | <ul> <li>Interference with other economic uses</li> </ul>                                                                                |
| 25%    | Regulatory<br>Compliance | Changes to legislation or both legislative and regulatory adjustments                                                                |                                                                                                                                          |



**A2.3 Simulation of sediment management at case study sites** 

- 10 case study sites selected:
  - at the Danube, Inn and Sava
  - in free-flowing and impounded sections
- Numerical sediment transport models applied






# **A2.4 Formulation of a DRB Sediment Improvement Strategy**

- DRB Sediment Improvement Strategy
  - will contain joint upscaling steps and procedures.
  - will consider the results gained in frame of the case study areas, their upscaling possibilities, but also other suitable measures assessed.
  - Involvement of relevant stakeholder will form the basis for the strategy,
  - ensuring the practicability and acceptance of the agreed measures.



# Developed transboundary Integrated Sediment Management Plan (ISMP) for the Danube River Basin

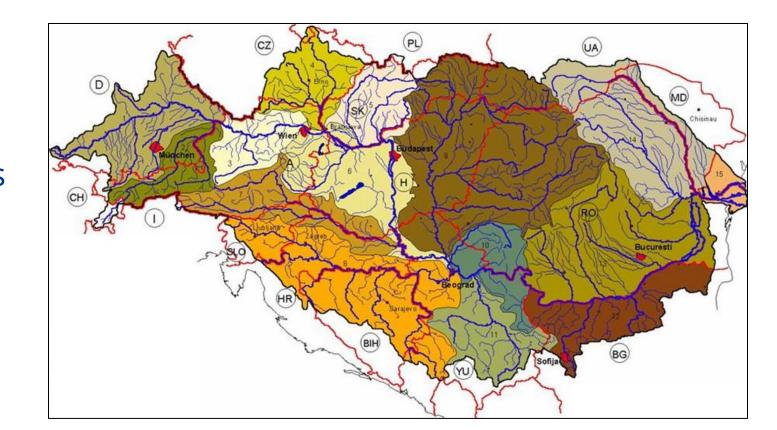


Recommendations for addressing sediment in the context of the WFD:

"Considering their natural dynamics and interactions with many uses in a river basin, sediments need to be addressed at the appropriate scale and in an integrated way. To achieve this, it is recommended to apply the concept of "integrated sediment management planning", which is defined in the context of this document as an approach that recognises the system (source to sea) scale at which sediment-related processes operate, and aligns these, in a consistent way with the objectives of environmental policies as well as those stemming from socioeconomic activities (e.g., navigation, flood risk mitigation, hydropower production, irrigation). [...]"

https://environment.ec.europa.eu/system/files/2022-09/CISdocumentsedimentfinalTO\_BE\_PUBLISHED\_1430554724.pdf

### 3.1 Characterisation of the system and spatial scope


- For the Characterisation of the system and spatial scope data from different sources were investigated (DanubeGIS and HydroSHEDS).
- Analyses were conducted to determine the sediment management units, considering both sediment quantity and quality.





### 3.2 System analysis

- Evaluation of characteristics of sub-basins, incorporating both sediment quantity and quality.
- Analyzing key pressures, impacts, and the effectiveness of past and ongoing sediment management measures.
  - conducting deficit/surplus analyses at defined spatial scales
  - assessing impoundments for quality issues and discontinuities,
  - categorizing river reaches based on key pressures and impacts.
- Tributaries analysed so far: Isar, Inn, Traun, Enns, Morava, Rába, Drava, Sava, Tisza.
- Sub-basins to be processed soon: Great Morava, Jiu,
   Olt, Iskar, Yantra, Arges, Siret, Prut



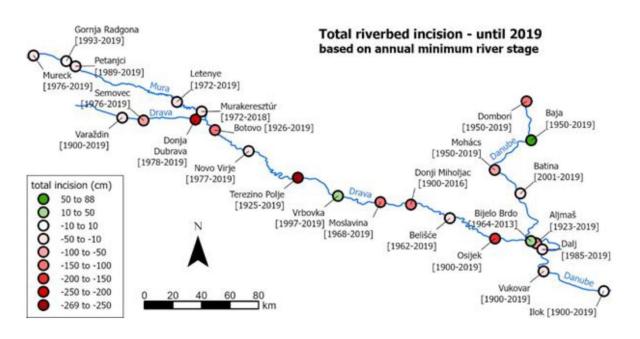



Figure: Bed incision at gauging stations (lifelineMDD)



DanubeSediment Q2

### 3.3 Definition of ISMP objectives

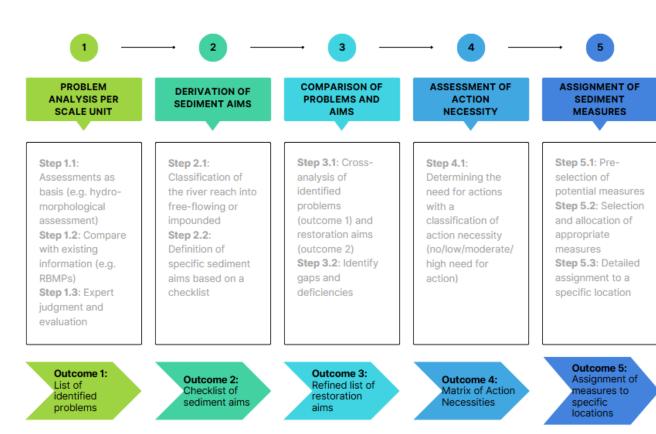

- Focus on defining objectives for Integrated Sediment Management Plan. Objectives:
  - establish coordinated monitoring and analysis system for sediment, improving data exchange between countries, and developing measures to address sediment management, hydromorphology, and sediment pollution.
  - Enhance cooperation between sectors and countries, mitigating flood and drought risks, and building institutional capacity for integrated sediment management.
  - Education and capacity-building to ensure the continuous improvement of ISMP.
    - 1. **Definition of specific quality and quantity objectives** of sediment, combine objectives..., for the pilot zones (according to 2.1, 2.2, 2.3), based on the analysis of the situation (Activity 3.1 and 3.2) (e.g. reduction of sediment pollution with heavy metals, and sediment quantity eg erosion prevention).
    - 2. Development of indicators to measure the success of the achieved objectives.
    - 3. **Development and implementation of strategies for managing risks associated** with failure to achieve goals.
    - 4. Connecting sediment management with the local community's needs and economic activities.
    - 5. Promotion of **cross-border cooperation in sediment management**. Work on common goals among the countries of the Danube river basin.

Figure: First draft of objectives



### 3.4 Definition of measures, development of the plan

- Development started with in-depth study of existing sediment management plans from other river basins, including the Elbe, Rhine, Sava, and Mississippi
  - highlighted the lack of an integrated sediment management plan for the Danube River Basin
- Planned as a participatory process, involving the ICPDR, stakeholders, and local experts.
- Next steps:
  - ISMP structure, including chapters and an implementation method, under preparation.
  - Procedure for upscaling measures currently under preparation and to be discussed with the partners





### 3.5 Implementation of the ISMP

- Stakeholder Engagement as key focus in this activity so far:
  - A functional network of stakeholders and decisionmakers was established to support ISMP development and implementation.
  - Regular updates were provided through a newsletter and social media posts.
  - Personal discussions at national pilot site stakeholder workshops, at the partner meetings and at international stakeholder events.
  - Providing information for and participating in ICPDR TG and EG meeting to inform about the project and the development of the plan

→ Get involved: <a href="https://interreg-danube.eu/projects/danubesediment-q2">https://interreg-danube.eu/projects/danubesediment-q2</a>

- @danubesediment-q2-interreg
- @danubesediment\_q2





# Thank you for attending!





#### DanubeSediment\_Q2



Sándor Baranya baranya.sandor@emk.bme.hu

https://interreg-danube.eu/projects/danubesediment-q2

- @danubesediment-q2-interreg
- @danubesediment\_q2





