

If you read this, you already know that **freshwater sediments are a sink of contaminants**. If not, now you know. Those contaminants are polycyclic aromatic hydrocarbon<sup>1</sup> (PAH), polychlorinated biphenyls (PCB), pharmaceuticals and personal care products<sup>2</sup> (PPCP), per- and polyfluoroalkyl substances<sup>3</sup> (PFAS), metals<sup>4,5</sup>... This is a non-exhaustive list. Today, **chemical analyses** are the primary approach for studying sediment contamination, in line with the Water Framework Directive (WFD) requirements. However, it is important to complete these with **bioassays** to provide an **effects-based** assessment of sediment quality and to integrate **chemical mixtures** and **bioavailable** compounds. In standardized guidelines, **formulated sediment** is recommended as control (eg. OECD 218). This formulated sediment is mainly composed of quartz sand, kaolin and peat and can be used for soil organisms (nematodes, ISO 10872), aquatic plants (watermilfoils, OECD 239), and benthic macroinvertebrates (amphipods, NFT 90-338-1). In an effort to develop new bioassays with a European amphipod, ***Gammarus fossarum***<sup>6-9</sup>, the relevance of the control sediment need to be verified. Two biomarkers, the **feeding rate** expressed in mg of food consumed per organism per day (AFNOR XP T 90-722-3) and the **reproduction** expressed as the number of embryos per female (AFNOR XP T 90-722-2), have been measured on gammarids exposed to **formulated sediments and natural sediments** from either Lake Geneva or dredging.

Concerning formulated sediments, results show a good reproducibility between controls but there is a high variability within conditions for the feeding rate (coefficient of variation up to 49%). The second result refers to the interpretation of the toxicity of natural sediments by comparing them to the control (i.e., formulated sediment). Respectively one and three sediments are considered as toxic regarding the feeding rate and the reproduction tests. Nevertheless, the feeding rate of the control is below most natural sediments data and usually feeding behaviour is a more sensitive biomarker than reproduction<sup>10</sup>. Therefore, the formulated sediment is compared to uncontaminated natural sediments, selected among 127 natural sediments tested, when metals, PCB and PAH concentrations were under the associated Threshold Effect Concentration<sup>11</sup>. The control remains under the uncontaminated natural sediment which indicates that formulated sediment is not adapted for feeding rate measurement.

Overall, after validating bioassay protocols for both biomarkers on more than 130 natural sediments, we show that ***Gammarus fossarum* is a promising organism to assess freshwater environmental sediment toxicity**. In order to refine the interpretation of results, we are currently establishing **threshold values**.

*The work presented on this poster is a part of my PhD project, which is included in R&D project conducted by a French research institute (INRAE) and a French company (Biomae, subsidiary of CARSO Group).*

Acknowledgments to:

Biomae & RiverLy teams for their technical support;

CIPEL for funding the sampling campaign on Lake Geneva and to F.-A. Forel Department (University of Geneva);

the Swiss Centre for Applied Ecotoxicology (Ecotox Centre) for organising and providing logistical support

References:

- (1) Richardson, S.; Mayes, W. M.; Faetsch, S.; Hetjens, H.; Teuchies, J.; Walker, P.; Heitmann, K.; Welham, K.; Moore, D.; Bervoets, L.; Kay, P.; Duffus, W.; Smith, N.; De Cooman, W.; Elst, R.; Ryken, E.; Rotchell, J. M.; Heise, S. Mixtures of Sediment Chemical Contaminants at Freshwater Sampling Sites across Europe with Different Contaminant Burdens. *Sci. Total Environ.* **2023**, 891, 164280. <https://doi.org/10.1016/j.scitotenv.2023.164280>.
- (2) Ebele, A. J.; Abou-Elwafa Abdallah, M.; Harrad, S. Pharmaceuticals and Personal Care Products (PPCPs) in the Freshwater Aquatic Environment. *Emerg. Contam.* **2017**, 3 (1), 1–16. <https://doi.org/10.1016/j.emcon.2016.12.004>.
- (3) Krupa, P. M.; Lotufo, G. R.; Boyda, J.; Melby, N. L.; Kimble, A. N. Toxicity of Per- and Polyfluoroalkyl Substances in Elutriates Prepared with Estuarine and Freshwater Sediments. *Ecotoxicol. Environ. Saf.* **2025**, 290, 117483. <https://doi.org/10.1016/j.ecoenv.2024.117483>.
- (4) Lidman, J.; Olid, C.; Bigler, C.; Berglund, Å. M. M. Effect of Past Century Mining Activities on Sediment Properties and Toxicity to Freshwater Organisms in Northern Sweden. *Sci. Total Environ.* **2023**, 872, 162097. <https://doi.org/10.1016/j.scitotenv.2023.162097>.
- (5) Boudebouz, A.; Gueroui, Y.; Boussadia, M. I.; Zergui, A.; Bousbia, A.; Boudalia, S. A Systematic Review of Potential Toxic Elements Contamination in Coastal and Freshwater Sediments from Algeria over the Past Two Decades. *Reg. Stud. Mar. Sci.* **2024**, 79, 103819. <https://doi.org/10.1016/j.rsma.2024.103819>.
- (6) Baudrimont, M.; Andrei, J.; Mornet, S.; Gonzalez, P.; Mesmer-Dudons, N.; Gourves, P.-Y.; Jaffal, A.; Dedourge-Geffard, O.; Geffard, A.; Geffard, O.; Garric, J.; Feurtet-Mazel, A. Trophic Transfer and Effects of Gold Nanoparticles (AuNPs) in Gammarus Fossarum from Contaminated Periphytic Biofilm. *Environ. Sci. Pollut. Res.* **2018**, 25 (12), 11181–11191. <https://doi.org/10.1007/s11356-017-8400-3>.
- (7) Geffard, O.; Xuereb, B.; Chaumot, A.; Geffard, A.; Biagianti, S.; Noël, C.; Abbaci, K.; Garric, J.; Charmantier, G.; Charmantier-Daures, M. Ovarian Cycle and Embryonic Development in Gammarus Fossarum: Application for Reproductive Toxicity Assessment. *Environ. Toxicol. Chem.* **2010**, 29 (10), 2249–2259. <https://doi.org/10.1002/etc.268>.

(8) Coulaud, R.; Geffard, O.; Vigneron, A.; Quéau, H.; François, A.; Chaumot, A. Linking Feeding Inhibition with Reproductive Impairment in *Gammarus* Confirms the Ecological Relevance of Feeding Assays in Environmental Monitoring. *Environ. Toxicol. Chem.* **2015**, 34 (5), 1031–1038. <https://doi.org/10.1002/etc.2886>.

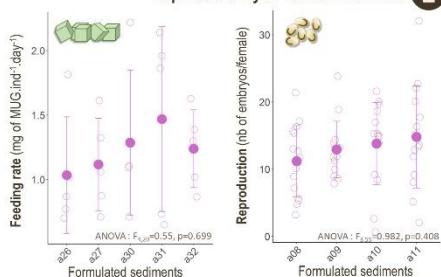
(9) Chaumot, A.; Coulaud, R.; Adam, O.; Quéau, H.; Lopes, C.; Geffard, O. In Situ Reproductive Bioassay with Caged *Gammarus fossarum* (Crustacea): Part 1—Gauging the Confounding Influence of Temperature and Water Hardness. *Environ. Toxicol. Chem.* **2020**, 39 (3), 667–677. <https://doi.org/10.1002/etc.4655>.

(10) Jubeaux, G.; Canal, J.; Rebillard, J.-P.; Julian, N.; Arcanjo, C.; Chaumot, A.; Geffard, O. *Encagement de gammes sur le bassin Adour-Garonne pour évaluer la qualité écotoxicologique des milieux aquatiques*. Astee TSM. <https://astee-tsm.fr/articles/tsm-78-2024-etude-jubeaux/> (accessed 2025-08-22).

(11) MacDonald, D. D.; Ingersoll, C. G.; Berger, T. A. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. *Arch. Environ. Contam. Toxicol.* **2000**, 39 (1), 20–31. <https://doi.org/10.1007/s002440010075>.

Poster & photos:

## Introduction

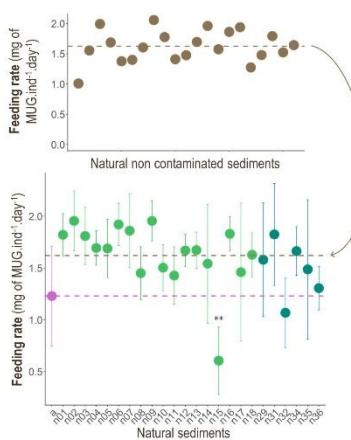

Sediments are a sink of contaminants such as polycyclic aromatic hydrocarbon (PAH), polychlorinated biphenyls (PCB), pharmaceuticals and personal care products (PPCP), per- and polyfluoralkyl substances (PFAS), and metals. Toxicity monitoring complements chemical monitoring of sediments, which relies on only a few substances and without any notion of impact. The test organism currently used for amphipods is the *Hyalella azteca*, a north-american species. In Europe, the model amphipod is *Gammarus fossarum* and standards already exist for measuring biological responses. This is why we aim to propose this species to develop new bioassays to assess environmental sediments toxicity in Europe, based on two biological responses: feeding rate and reproduction.

## Objectives

- 1 Reproducibility of the lab control : formulated sediment
- 2 Proof of concept of the sensitivity of responses to identify toxic sediments through case studies

## Results

### Reproducibility of control sediment 1



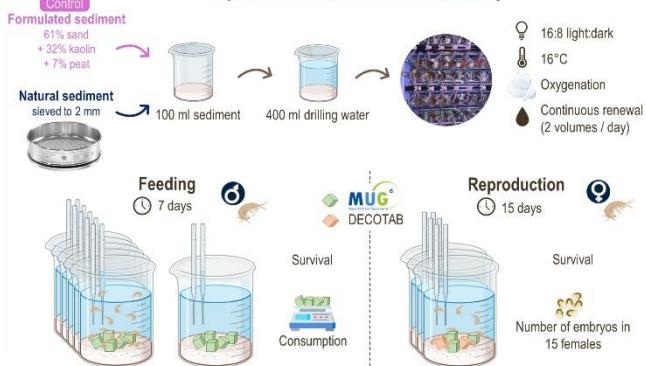

No significant difference between controls so we can use a laboratory reference → average control

However, high variability within condition for feeding rate → relevance of formulated sediment on this biological answer?

## Discussion

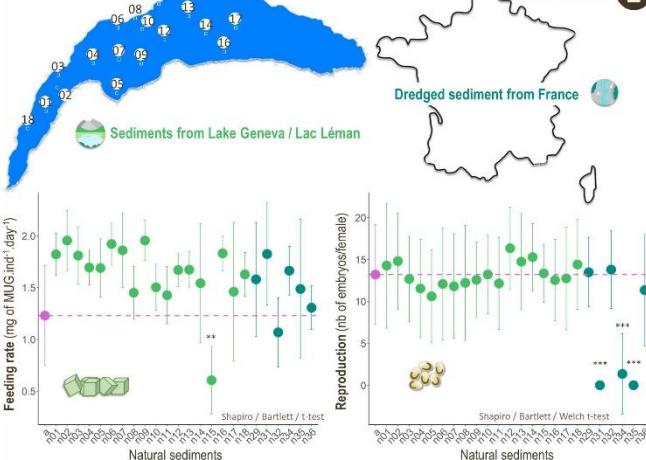
Feeding rates of non contaminated sediments [selected if metals, PCB and PAH concentrations under Threshold Effect Concentration (MacDonald et al., 2000)]




Better sediment discrimination

→ The formulated sediment may not be a good control




## Methods

### Preparation of sediments in the laboratory



## Results

### Case studies 2



Feeding inhibition for only 1 lake sediment

Impact on fecundity for 3 dredged sediments

However, the feeding rate of the control is below natural sediments while usually feeding behaviour is a more sensitive biomarker than reproduction (Jubéa et al., 2024)

## Conclusions

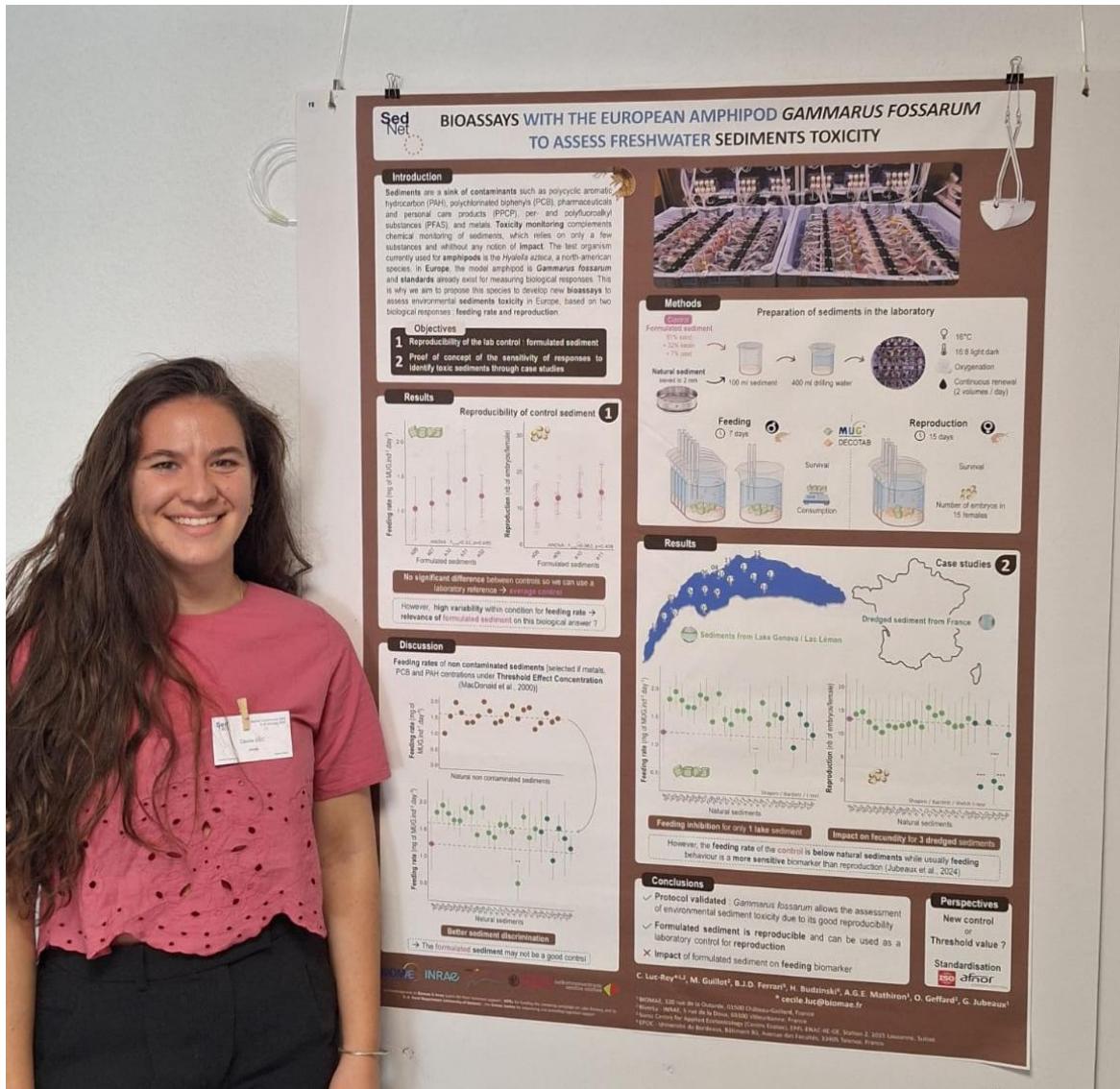
- ✓ Protocol validated : *Gammarus fossarum* allows the assessment of environmental sediment toxicity due to its good reproducibility
- ✓ Formulated sediment is reproducible and can be used as a laboratory control for reproduction
- ✗ Impact of formulated sediment on feeding biomarker

C. Luc-Rey<sup>1,2</sup>, M. Guillot<sup>2</sup>, B.J.D. Ferrari<sup>3</sup>, H. Budzinski<sup>4</sup>, A.G.E. Mathiron<sup>1</sup>, O. Geffard<sup>2</sup>, G. Jubéa<sup>1</sup>  
\* cecile.luc@biomae.fr

<sup>1</sup> BIOMAE, 320 rue de la Outarde, 01500 Château-Gaillard, France

<sup>2</sup> Rivéry - INRAE, 5 rue de la Doua, 69100 Villeurbanne, France

<sup>3</sup> Swiss Centre for Applied Ecotoxicology (Centre Ecotox), EPFL-ENAC-IIE-GE, Station 2, 1015 Lausanne, Suisse


<sup>4</sup> EPOC - Université de Bordeaux, Bâtiment B2, Avenue des Facultés, 33405 Talence, France

## Perspectives


New control or Threshold value?

Standardisation





Cécile LUC-REY (PhD student at BIOMAE in collaboration with RiverLy laboratory of INRAE)



Cécile LUC-REY (PhD student at BIOMAE in collaboration with RiverLy laboratory of INRAE) & Anthony Mathiron (R&D manager at BIOMAE)